98%
921
2 minutes
20
Investigators are debating on the positive and negative priming effects of biochar on native soil organic carbon (SOC), which is largely attributed to the technical barrier of identifying biochar contribution to the apparently measured SOC or mineralized CO. We combined benzene polycarboxylic acids (BPCAs) molecular biomarkers and soil particle density fractionation to identify biochar contributions to the carbon content in three representative allitic soils in Yunnan. The soil-biochar mixture was incubated for one-month to avoid significant biodegradation of biochar. The results showed that BPCAs were mainly distributed in free light fractions (fLF) up to 87 % of the total BPCAs contents after one month incubation. Recognition of BPCAs in occluded light fractions (oLF) and heavy fractions (HF) suggested a significant interaction between biochar and soil mineral particles. In addition, the percentage of B6CA is comparable or even higher in HF than in fLF or oLF. Thus, biochar-mineral interactions may be an additional stabilization mechanism besides the condensed aromatic structures in biochar. The apparently measured carbon contents increased after biochar application, and both positive and negative priming effects to native SOC were observed after deducting biochar contents based an accurate calculation from BPCAs. The most native SOC depletion (positive priming effects) was noted for the soil with the most favored biochar embedding in soil mineral compositions. This study emphasized that combining BPCAs molecular biomarkers and soil particle density fractionation could accurately quantify different carbon pools, and thus facilitate a comprehensive understanding on the stabilization and turnover of biochar in soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.159025 | DOI Listing |
Environ Sci Process Impacts
September 2025
Nebraska Water Center, Part of the Robert B. Daugherty Water for Food Global Institute 2021 Transformation Drive, University of Nebraska, Lincoln, Nebraska 68588-6204, USA.
Rice is consumed by ∼50% of the global population, grown primarily in flooded paddy fields, and is susceptible to arsenic accumulation. Inorganic arsenic, particularly in reduced form (As(III)), is considered the most toxic and is more likely to accumulate in rice grains under flooded systems. We postulate that increased levels of highly reactive iron minerals, such as ferrihydrite, in paddy soils can regulate the bioavailability of arsenic and reduce its uptake by priming iron plaque formation.
View Article and Find Full Text PDFGlob Chang Biol
September 2025
State Key Laboratory of Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory of Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China.
Microbial nitrogen use efficiency (NUE) describes the partitioning of organic N between microbial growth and N mineralization, which is crucial for assessing soil N retention. However, how warming affects NUE along soil depth remains unclear. Based on a whole-soil-profile warming experiment (0 to 100 cm, +4°C) on the Qinghai-Tibetan Plateau, combined with O and N isotope labeling techniques, we determined soil carbon (C) composition, edaphic properties, and microbial parameters.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
p-Dichlorobenzene (p-DCB), a persistent halogenated pollutant with regulatory thresholds of up to 200 mg/kg in industrial soils in China, poses significant environmental and health risks. Current bioremediation strategies are limited by poor microbial tolerance to high p-DCB concentrations (200-1000 mg/kg). Here, we report Cupriavidus sp.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Department of Public Health Sciences, University of Texas at El Paso, 211 Kelly Hall, 500 W University, El Paso, TX 79902, USA. Electronic address:
The correlation between Pb species formation and bioaccessibility in alkaline, smelter-impacted soil co-contaminated with other toxic trace elements after treatment with phosphorus-containing amendments was investigated. The soil was collected near a former copper smelter, El Paso, Texas. It contained Pb (3200 ± 142 mg kg), As (254 ± 14 mg kg), and Cd (110 ± 8 mg kg).
View Article and Find Full Text PDFChemosphere
September 2025
Department of Materials Design and Innovation, University at Buffalo, NY, 14260, USA. Electronic address:
Bioremediation offers a sustainable strategy for mitigating heavy metal contamination in soil, but is often constrained by slow removal kinetics, limited uptake efficiency, and high implementation costs. This study investigates dried mycelium membranes, rich in surface-bound proteins and high surface area, as a promising biosorbent for in situ Pb(II) remediation in urban soils. Untreated mycelium membranes buried in soil achieved Pb(II) removal efficiencies of ∼70 % and ∼40 % at initial lead soil concentrations of 100 mg/kg and 1500 mg/kg, respectively, within eight days.
View Article and Find Full Text PDF