A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Impact of Visit-to-Visit Triglyceride-Glucose Index Variability on the Risk of Cardiovascular Disease in the Elderly. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The aging population is increasingly susceptible to cardiovascular disease (CVD). Visit-to-visit variability in glucose and lipid levels both contributed to CVD risk independent of their mean values. However, whether variability in the triglyceride-glucose (TyG) index is a risk factor for CVD remains unknown. . In this retrospective study of electronic health records, 27,520 participants aged over 60 years were enrolled. The visit-to-visit variability of TyG index was calculated from annual health examination data and defined as average real variability (ARV), standard deviation (SD), or the coefficient of variability (CV). CVD events were identified from the chronic disease registry or follow-up database and included myocardial infarction, angina, coronary, and stroke. Multivariate Cox regression was used to examine the correlation between TyG variability and incident CVD.

Results: Over a median follow-up of 6.2 years, there were 2,178 CVD events. When participants were divided into four quartiles according to their TyG variability, after adjusting for established CVD risk factors, subjects in the top quartile had (HR = 1.18, 95% CI 1.05-1.34, =0.005) significantly higher CVD risk than those in the bottom quartile. The association remained significant in overweight individuals or those without diabetes ( < 0.005 and < 0.01, respectively).

Conclusions: High variability in TyG was significantly associated with elevated CVD risk in the elderly, independent of average TyG and other risk factors. Close monitoring variability in TyG might be informative to identify old individuals at high risk of CVD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9507760PMC
http://dx.doi.org/10.1155/2022/5125884DOI Listing

Publication Analysis

Top Keywords

cvd risk
16
variability tyg
12
variability
10
cvd
9
risk
8
cardiovascular disease
8
visit-to-visit variability
8
tyg risk
8
cvd events
8
tyg variability
8

Similar Publications