A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

PM Forecast in Korea using the Long Short-Term Memory (LSTM) Model. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: The National Institute of Environmental Research, under the Ministry of Environment of Korea, provides two-day forecasts, through AirKorea, of the concentration of particulate matter with diameters of ≤ 2.5 μm (PM) in terms of four grades (low, moderate, high, and very high) over 19 districts nationwide. Particulate grades are subjectively designated by human forecasters based on forecast results from the Community Multiscale Air Quality (CMAQ) and artificial intelligence (AI) models in conjunction with weather patterns. This study evaluates forecasts from the long short-term memory (LSTM) algorithm relative to those from CMAQ-solely and AirKorea using observations from 2019. The skills of the one-day PM forecasts over the 19 districts were 39-70% for CMAQ, 72-79% for LSTM, and 73-80% for AirKorea; the AI forecasts showed comparable skills to the human forecasters at AirKorea. The one-day forecast skill levels of high and very high PM pollution grades are 31-98%, 31-74%, and 39-81% for the CMAQ-solely, the LSTM, and the AirKorea forecasts, respectively. Despite good skills for forecasting the high and very high events, CMAQ-solely forecasts also generate substantially higher false alarm rates (up to 86%) than the LSTM and AirKorea forecasts (up to 58%). Hence, applying only the LSTM model to the CMAQ forecasts can yield reasonable forecast skill levels comparable to the operational AirKorea forecasts that elaborately combine the CMAQ model, AI models, and human forecasters. The present results suggest that applications of appropriate AI models can greatly enhance PM forecast skills for Korea in a more objective way.

Supplementary Information: The online version contains supplementary material available at 10.1007/s13143-022-00293-2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9483905PMC
http://dx.doi.org/10.1007/s13143-022-00293-2DOI Listing

Publication Analysis

Top Keywords

airkorea forecasts
16
high high
12
human forecasters
12
forecasts
9
long short-term
8
short-term memory
8
memory lstm
8
lstm model
8
forecast skill
8
skill levels
8

Similar Publications