98%
921
2 minutes
20
Background: Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Current guidelines for HCC management recommend surveillance of high-risk patients every 6 mo using ultrasonography. Serum biomarkers, like alpha-fetoprotein (AFP), protein induced by vitamin K absence/antagonist-II (PIVKA-II) and lectin-reactive AFP, show suboptimal performance for detection of HCC, which is crucial for successful resection or treatment. Thus, there is a significant need for new biomarkers to aid early diagnosis of HCC. Studies have shown that the expression level of human microRNAs (miRNAs), a small, non-coding RNA species released into the blood, can serve as an early marker for various diseases, including HCC.
Aim: To evaluate the diagnostic role of miRNAs in HCC as single markers, signatures or in combination with known protein biomarkers.
Methods: Our prospective, multicenter, case-control study recruited 660 participants (354 controls with chronic liver disease and 306 participants with HCC) and employed a strategy of initial screening by two independent methods, real-time quantitative PCR ( = 60) and next-generation sequencing ( = 100), to assess a large number of miRNAs. The results from the next-generation sequencing and real-time quantitative PCR screening approaches were then combined to select 26 miRNAs (including two putative novel miRNAs). Those miRNAs were analyzed for their diagnostic potential as single markers or in combination with other miRNAs or established protein biomarkers AFP and PIVKA-II real-time quantitative PCR in training ( = 200) and validation cohorts ( = 300).
Results: We identified 26 miRNAs that differentiated chronic liver disease controls from (early) HCC two independent discovery approaches. Three miRNAs, miR-21-5p (miR-21), miR-320a and miR-186-5p, were selected by both methods. In the training cohort, only miR-21, miR-320d and miR-423 could significantly distinguish ( < 0.05) between the HCC and chronic liver disease control groups. In the multivariate setting, miR-21 with PIVKA-II was selected as the best combination, resulting in an area under the curve of 0.87 for diagnosis and area under the curve of 0.74 for early diagnosis of HCC. In the validation cohort, only miR-21 and miR-423 could be confirmed as potential HCC biomarkers. A combination of miRNAs did not perform better than any single miRNA. Improvement of PIVKA-II performance through combination with miRNAs could not be confirmed in the validation panel. Two putative miRs, put-miR-6 and put-miR-99, were tested in the training and validation panels, but their expression could only be detected in very few samples and at a low level (cycle threshold between 31.24 and 34.97).
Conclusion: miRNAs alone or as a signature in combination with protein biomarkers AFP and PIVKA-II do not improve the diagnostic performance of the protein biomarkers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9367234 | PMC |
http://dx.doi.org/10.3748/wjg.v28.i29.3917 | DOI Listing |
Onco Targets Ther
September 2025
State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010021, People's Republic of China.
Background: Insulinoma, the most common type of pancreatic endocrine tumor, frequently induces hypoglycemia due to persistent hyperinsulinemia. Although Mi-Lnc70 expression progressively increases during pancreatic maturation in mice, the biological role of Mi-Lnc70 in pancreatic β cells remains elusive.
Aim: This study was designed to investigate the role of LncRNA-Mi-Lnc70 in the mouse pancreatic β-cell line MIN6.
Front Med (Lausanne)
August 2025
State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China.
Background: Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease. However, the biological role of mitochondrial metabolism (MM) in COPD remains poorly understood. This study aimed to explore the underlying mechanisms of MM in COPD using bioinformatics methods.
View Article and Find Full Text PDFNoncoding RNA Res
December 2025
Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
Purpose: To verify the stability and reliability of circulating microRNA (miRNA) profiles in plasma and serum under different processing and storage conditions to inform future applications to circulating biomarker analyses.
Background: The development of blood-based methods for early disease detection has become increasingly desirable across various medical fields. RNA profiles have been investigated but have been a challenge due to rapid degradation of the analyte by ubiquitous RNases.
Epigenomics
September 2025
Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Aims: Psychological resilience refers to an individual's capacity to adapt to adverse events. MicroRNAs (miRNAs) play a crucial role in regulating post-transcriptional processes, while small extracellular vesicles (sEVs) act as transport vehicles. This study aimed to employ genome-wide profiling to identify and validate differences in the expression of resilience-associated sEV-miRNAs between low resilience (LR) and high resilience (HR) in young adults.
View Article and Find Full Text PDFCurr Drug Targets
September 2025
Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.
Double homeobox A pseudogene 9 (DUXAP9), also known as long intergenic non-coding RNA 1296 (LINC01296) and lymph node metastasis-associated transcript 1 (LNMAT1), is an emerging lncRNA encoded by a pseudogene. It has been reported to be upregulated in various tumor types and functions as an oncogenic factor. The high expression of DUXAP9 is closely related to clinical pathological features and poor prognosis in 16 types of malignant tumors.
View Article and Find Full Text PDF