98%
921
2 minutes
20
Epidemiological projections point to acquisition of ever-expanding multidrug resistance (MDR) by , a commensal of the digestive tract and a source of urinary tract pathogens. Bioinformatics analyses of a large collection of genomes from EnteroBase, enriched in clinical isolates of worldwide origins, suggest the Cytotoxic Necrotizing Factor 1 (CNF1)-toxin encoding gene, , is preferentially distributed in four common sequence types (ST) encompassing the pandemic MDR lineage ST131. This lineage is responsible for a majority of extraintestinal infections that escape first-line antibiotic treatment, with known enhanced capacities to colonize the gastrointestinal tract. Statistical projections based on this dataset point to a global expansion of -positive multidrug-resistant ST131 strains from subclade 30Rx/C2, accounting for a rising prevalence of -positive strains in ST131. Despite the absence of phylogeographical signals, -positive isolates segregated into clusters in the ST131-30Rx/C2 phylogeny, sharing a similar profile of virulence factors and the same allele. The suggested dominant expansion of -positive strains in ST131-30Rx/C2 led us to uncover the competitive advantage conferred by for gut colonization to the clinical strain EC131GY ST131-30Rx/C2 versus -deleted isogenic strain. Complementation experiments showed that colon tissue invasion was compromised in the absence of deamidase activity on Rho GTPases by CNF1. Hence, gut colonization factor function of was confirmed for another clinical strain ST131-30Rx/C2. In addition, functional analysis of the -positive clinical strain EC131GY ST131-30Rx/C2 and a -deleted isogenic strain showed no detectable impact of the CNF1 gene on bacterial fitness and inflammation during the acute phase of bladder monoinfection. Together these data argue for an absence of role of CNF1 in virulence during UTI, while enhancing gut colonization capacities of ST131-30Rx/C2 and suggested expansion of -positive MDR isolates in subclade ST131-30Rx/C2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519008 | PMC |
http://dx.doi.org/10.1080/19490976.2022.2121577 | DOI Listing |
Food Funct
September 2025
College of Food Science, Southwest University, Chongqing, 400715, China.
Bifidobacteria are naturally found in the human gut and quickly establish dominance shortly after birth, playing a crucial role in the development and stability of the infant gut microbiota. A growing body of research suggests that host and environmental factors shape the colonization and the relative abundance of bifidobacteria in the infant gut during early life. Understanding the factors that influence bifidobacterial colonization and maintaining normal colonization levels are keys to ensuring gut health.
View Article and Find Full Text PDFElife
September 2025
Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India.
The UFD-1 (ubiquitin fusion degradation 1)-NPL-4 (nuclear protein localization homolog 4) heterodimer is involved in extracting ubiquitinated proteins from several plasma membrane locations, including the endoplasmic reticulum. This heterodimer complex helps in the degradation of ubiquitinated proteins via the proteasome with the help of the AAA+ATPase CDC-48. While the ubiquitin-proteasome system is known to have important roles in maintaining innate immune responses, the role of the UFD-1-NPL-4 complex in regulating immunity remains elusive.
View Article and Find Full Text PDFFront Cell Infect Microbiol
September 2025
Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China.
The gut microbiota of piglets is crucial for intestinal health and immune function, yet highly susceptible to various factors. Multiple factors such as Genetic and Sow Factors, feeding environment, diet and pathogen combine to shape the gut microbiota of piglets. PEDV, a highly pathogenic and transmissible virus, disrupts the gut microbiota by damaging the intestinal epithelial barrier, leading to microbial imbalance, weakened gut immunity, and severe diarrhea.
View Article and Find Full Text PDFNat Rev Gastroenterol Hepatol
September 2025
Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA, USA.
Enteric dopaminergic signalling has a critical role in gastrointestinal motility, maintaining mucosal integrity and modulating the gut microbiome. In this Review, we provide an overview of dopamine metabolism and signalling pathways in the central nervous system and periphery and their effects on gastrointestinal health and disease. We describe the physiological role of enteric dopamine, including a discussion of therapeutic opportunities and future research needs.
View Article and Find Full Text PDFSci Signal
September 2025
Department of Surgery, University of Alabama Birmingham, Birmingham, AL 35233, USA.
Amphetamines are psychostimulants that are commonly used to treat neuropsychiatric disorders and are prone to misuse. The pathogenesis of amphetamine use disorder (AUD) is associated with dysbiosis (an imbalance in the body's microbiome) and bacterially produced short-chain fatty acids (SCFAs), which are implicated in the gut-brain axis. Amphetamine exposure in both rats and humans increases the amount of intestinal , which releases SFCAs.
View Article and Find Full Text PDF