Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent studies have shown that the ability to process number in the face of conflicting dimensions of magnitude is a crucial aspect of numerosity judgments, relying in part on the inhibition of the non-numerical dimensions. Here we report, for the first time, that these inhibitory control processes are specific to the conflicting dimension of magnitude. Using a non-symbolic numerical comparison task adapted to a conflict adaptation paradigm on a group of 82 adults, we show that congruency effects between numerical and non-numerical information were reduced only when the conflicting dimension was the same in the preceding incongruent trial. Attention to number thus involves inhibitory control processes acting at a specific level of information. These results contribute to better characterize the domain general abilities involved in numerical cognition, and provide evidence for a specific interaction between numerosity perception and inhibitory control.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cognition.2022.105285DOI Listing

Publication Analysis

Top Keywords

inhibitory control
12
attention number
8
control processes
8
conflicting dimension
8
number requires
4
requires magnitude-specific
4
magnitude-specific inhibition
4
inhibition studies
4
studies ability
4
ability process
4

Similar Publications

Excitatory glycine receptors control ventral hippocampus synaptic plasticity and anxiety-related behaviors.

Proc Natl Acad Sci U S A

September 2025

Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris 75005, France.

Excitatory glycine receptors (eGlyRs), composed of the glycine-binding NMDA receptor subunits GluN1 and GluN3A, have recently emerged as a novel neuronal signaling modality that challenges the traditional view of glycine as an inhibitory neurotransmitter. Unlike conventional GluN1/GluN2 NMDARs, the distribution and role of eGlyRs remain poorly understood. Here, we show that eGlyRs are highly enriched in the ventral hippocampus (VH) and confer distinct properties on this brain region.

View Article and Find Full Text PDF

Influenza virus neuraminidase (NA) is a crucial target for protective antibodies, yet the development of recombinant NA protein as a vaccine has been held back by instability and variable expression. We have taken a pragmatic approach to improving expression and stability of NA by grafting antigenic surface loops from low-expressing NA proteins onto the scaffold of high-expressing counterparts. The resulting hybrid proteins retained the antigenic properties of the loop donor while benefiting from the high-yield expression, stability, and tetrameric structure of the loop recipient.

View Article and Find Full Text PDF

ATG16L1 controls mammalian vacuolar proton ATPase.

J Cell Biol

October 2025

Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.

The mechanisms governing mammalian proton pump V-ATPase function are of fundamental and medical interest. The assembly and disassembly of cytoplasmic V1 domain with the membrane-embedded V0 domain of V-ATPase is a key aspect of V-ATPase localization and function. Here, we show that the mammalian protein ATG16L1, primarily appreciated for its role in canonical autophagy and in noncanonical membrane atg8ylation processes, controls V-ATPase.

View Article and Find Full Text PDF

Background: The global spread of antimicrobial resistance (AMR) in threatens empiric single-dose gonorrhoea treatment. Enhanced global AMR surveillance is imperative. We report i) gonococcal antimicrobial susceptibility and resistance data from 2023 in the World Health Organization Enhanced Gonococcal Antimicrobial Surveillance Programme (WHO EGASP) in the WHO Western Pacific Region (Cambodia, the Philippines, Viet Nam), Southeast Asian Region (Indonesia, Thailand), and African Region (Malawi, South Africa, Uganda, Zimbabwe), and ii) metadata of the gonorrhoea patients.

View Article and Find Full Text PDF

Purpose: SARS-CoV-2 infection may lead to a worse prognosis in COVID-19 patients by inducing syncytia formation which implies intercellular transmission and immune evasion. Hesperidin (HSD) and hesperetin (HST) are two citrus flavonoids that demonstrate the potential to interfere with spike/human angiotensin-converting enzyme-2 (hACE2) binding and show an inhibitory effect in the SARS-CoV-2 pseudovirus internalization model. Here, we determined the effects of HSD and HST to inhibit syncytia formation using in vitro cell models.

View Article and Find Full Text PDF