Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fixation is the most critical step in the green tea process. Hence, this study developed a rapid and accurate moisture content detection for the green tea fixation process based on near-infrared spectroscopy and computer vision. Specifically, we created a quantitative moisture content prediction model appropriate for the processing of green tea fixation. First, we collected spectrum and image information of green tea fixation leaves, utilizing near-infrared spectroscopy and computer vision. Then, we applied the partial least squares regression (PLSR), support vector regression (SVR), Elman neural network (ENN), and Elman neural network based on whale optimization algorithm (WOA-ENN) methods to build the prediction models for single data (data from a single sensor) and mid-level data fusion, respectively. The results revealed that the mid-level data fusion strategy combined with the WOA-ENN model attained the best effect. Namely, the prediction set correlation coefficient (Rp) was 0.9984, the root mean square error of prediction (RMSEP) was 0.0090, and the relative percent deviation (RPD) was 17.9294, highlighting the model's excellent predictive performance. Thus, this study identified the feasibility of predicting the moisture content in the process of green tea fixation by miniaturized near-infrared spectroscopy. Moreover, in establishing the model, the whale optimization algorithm was used to overcome the defect whereby the Elman neural network falls into the local optimum. In general, this study provides technical support for rapid and accurate moisture content detection in green tea fixation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9498461PMC
http://dx.doi.org/10.3390/foods11182928DOI Listing

Publication Analysis

Top Keywords

green tea
28
tea fixation
24
moisture content
20
near-infrared spectroscopy
12
elman neural
12
neural network
12
rapid accurate
8
accurate moisture
8
content detection
8
detection green
8

Similar Publications

Jasmine tea: unveiling the secrets of processing, flavor characteristics, and potential health benefits.

Crit Rev Food Sci Nutr

September 2025

Key Laboratory of Tea Science of Ministry of Education and Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Hunan Agricultural University, Changsha, China.

Jasmine tea, a further processing tea made by scenting green, black, oolong, or other tea with jasmine flowers, is widely appreciated worldwide for its fragrant aroma, refreshing taste, and beneficial health effects. The production of jasmine tea is a meticulous and complex process that involves chemical reactions, physical adsorption, and flavor interaction effects at the sensory level between jasmine and tea. This paper provides a comprehensive review of the research on the processing technology, characteristic aroma formation, nonvolatile compounds, and health benefits of jasmine tea.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) infects up to 80% of the world's population. Here, we show that HCMV infection leads to widespread changes in human chromatin accessibility and chromatin looping, with hundreds of thousands of genomic regions affected 48 hr after infection. Integrative analyses reveal HCMV-induced perturbation of Hippo signaling through drastic reduction of TEAD1 transcription factor activity.

View Article and Find Full Text PDF

This article presents an advanced iteration of the polyoxometalate (POM)-Ionosolv concept to generate biobased methyl formate in high yield and a bleached cellulose pulp from lignocellulosic biomass in a single-step operation by using redox-balanced POM catalysts and molecular oxygen in alcoholic ionic liquid (IL) mixtures. The performance of the three Ionosolv-ILs triethylammonium hydrogen sulfate ([TEA][HSO]), N,N-dimethylbutylammonium hydrogen sulfate ([DMBA][HSO4]), and tributylmethylphosphonium methyl sulfate ([TBMP][MeSO]), mixed with methanol (MeOH) (30/70 wt%), is evaluated by methyl formate yield from extracted hemicellulose and lignin as well as purity of the bleached cellulose pulp in the presence of various Keggin-type POMs. The redox-balanced HPVMnMoO POM catalyst in [TBMP][MeSO]/MeOH emerge as the most effective combination, achieving 20% methyl formate yield from commercial beech wood.

View Article and Find Full Text PDF

The Age-Associated Long Noncoding RNA lnc81 Regulates Ovarian Granulosa Cell Proliferation and Apoptosis Through TEAD2-CCN1/2 Pathway in Mice.

J Cell Physiol

September 2025

Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.

Ovarian granulosa cells (GCs) are pivotal for follicular homeostasis, and their dysregulated apoptosis drives age-related ovarian aging. The Hippo signaling pathway, modulated by long noncoding RNAs (lncRNAs), is implicated in regulating GCs proliferation and ovarian aging. TEAD2 (Transcriptional Enhanced Associate Domain 2), a key downstream transcription factor of the Hippo signaling pathway, plays a critical role in regulating cell proliferation, apoptosis, and embryonic stem cell self-renewal.

View Article and Find Full Text PDF

Background and objectives With the continuous presence of microflora, saliva, and frequent intake of coloured food, the colour stability of any aesthetic material may become compromised. Hence, the present study was conducted to evaluate the influence of tea, coffee, and turmeric solutions on the colour stability of commercially available heat-cured and autopolymerizing denture base acrylic resins as well as a soft lining material. Methods Twenty-four rectangular samples measuring 20 mm × 15 mm × 2 mm were prepared for each type of test material.

View Article and Find Full Text PDF