98%
921
2 minutes
20
There is increasing evidence for the potential use of antimicrobial peptides as dietary supplements and antibiotic substitutes. In this study, we analyzed the differential effects of varying levels of antimicrobial peptides on the intestinal function and intestinal microbial and disease resistance of Pengze crucian carp. Approximately 630 experimental fishes were randomized in the control group (G0: 0 mg/kg) and in five groups supplemented with different doses of AMPs (G1: 100 mg/kg, G2: 200 mg/kg, G3: 400 mg/kg, G4: 800 mg/kg, and G5: 1600 mg/kg) and were fed for ten weeks. Three replicates per group of 35 fish were performed. The results showed that AMPs promoted intestinal villus development and increased intestinal muscular thickness (p < 0.05) and goblet cell abundance. The enzymatic activities of all groups supplemented with AMPs were effectively improved. AMP supplementation significantly enhanced the activities of antioxidant enzymes and digestive enzymes in the intestines of G3 animals (p < 0.05). Compared with G0 animals, AMP-supplemented animals regulated the expression of intestinal immune-related genes and exhibited significant differences in the G3 animal group (p < 0.05). The abundance of intestinal Firmicutes and Bacteroidetes increased in the AMP-supplemented groups, but the Firmicutes/Bacteroidetes ratio was lower than that in the G0 group. AMP supplementation also decreased the abundance of Fusobacterium while increasing the proportion of Actinobacteria (p < 0.05). After Aeromonas hydrophila infection, the expression levels of anti-inflammatory factors in the intestinal tract of G3 animals were significantly upregulated, and the level of the proinflammatory factor was decreased (p < 0.05). The intestinal Cetobacterium levels of G3 animals were significantly increased (p < 0.01), while the Proteobacteria levels were decreased, and the intestinal goblet cell proliferation was significantly lower than that of G0 animals (p < 0.05). This indicates that groups supplemented with AMPs have better disease resistance than the G0 group and can rapidly reduce the adverse effects caused by inflammatory response. Taken together, the present results suggest that AMP supplementation can improve intestinal function and intestinal microbial and pathogen resistance in Pengze crucian carp.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9495946 | PMC |
http://dx.doi.org/10.3390/antiox11091756 | DOI Listing |
PLoS Pathog
September 2025
Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
Macrophages are professional phagocytes that play a major role in engulfing and eliminating invading pathogens. Some intracellular pathogens, such as Salmonella enterica serovar Typhimurium, exploit macrophages as niches for their replication, which requires precise and dynamic modulation of bacterial gene expression in order to resist the hostile intracellular environment. Here, we present a comprehensive analysis of the global transcriptome of S.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
September 2025
Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
Anaerobic bacteria cause a wide range of infections, varying from mild to severe, whether localized, implant-associated, or invasive, often leading to high morbidity and mortality. These infections are challenging to manage due to antimicrobial resistance against common antibiotics such as carbapenems and nitroimidazoles. The empirical use of antibiotics has contributed to the emergence of resistant organisms, making the identification and development of new antibiotics increasingly difficult.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
September 2025
School of Life Science, Liaoning Normal University, Dalian, 116081, China.
Cutibacterium acnes (C. acnes, formerly classified as Propionibacterium acnes) is a Gram-positive bacterium that contributes to the development of acne vulgaris, resulting in inflammation and pustule formation on the skin. In this study, we developed and synthesized a series of antimicrobial peptides (AMPs) that are derived from the skin secretion of Rana chensinensis.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States.
Slippery liquid-infused porous surfaces (or "SLIPS") can prevent bacterial surface fouling, but they do not inherently possess the means to kill bacteria or reduce cell loads in surrounding media. Past reports show that the infused liquids in these materials can be leveraged to load and release antimicrobial agents, but these approaches are generally limited to the use of hydrophobic agents that are soluble in the infused oily phases. Here, we report the design of so-called "proto-SLIPS" that address this limitation and permit the release of highly water-soluble (or oil-insoluble) agents.
View Article and Find Full Text PDFFood Res Int
November 2025
Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; Institute of Leisure Agriculture, Shandong Academy of Agricultural Sciences, Jinan 250100, China. Electronic address:
Hen eggs are rich in proteins, which are a potential source of bioactive peptides. Incubation of fertilized egg changes the egg protein, which may affect the properties and activity of derived peptides. To understand these metamorphoses, hydrolysate fractions of 10-day incubated chicken embryo (CE) proteins of 0.
View Article and Find Full Text PDF