Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Somatosensation, the detection and transduction of external and internal stimuli such as temperature or mechanical force, is vital to sustaining our bodily integrity. But still, some of the mechanisms of distinct stimuli detection and transduction are not entirely understood, especially when noxious perception turns into chronic pain. Over the past decade major progress has increased our understanding in areas such as mechanotransduction or sensory neuron classification. However, it is in particular the access to human pluripotent stem cells and the possibility of generating and studying human sensory neurons that has enriched the somatosensory research field. Based on our previous work, we describe here the generation of human stem cell-derived nociceptor-like cells. We show that by varying the differentiation strategy, we can produce different nociceptive subpopulations with different responsiveness to nociceptive stimuli such as capsaicin. Functional as well as deep sequencing analysis demonstrated that one protocol in particular allowed the generation of a mechano-nociceptive sensory neuron population, homogeneously expressing TRPV1. Accordingly, we find the cells to homogenously respond to capsaicin, to become sensitized upon inflammatory stimuli, and to respond to temperature stimulation. The efficient and homogenous generation of these neurons make them an ideal translational tool to study mechanisms of sensitization, also in the context of chronic pain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497105PMC
http://dx.doi.org/10.3390/cells11182905DOI Listing

Publication Analysis

Top Keywords

human stem
8
stem cell-derived
8
sensory neurons
8
tool study
8
study mechanisms
8
mechanisms sensitization
8
detection transduction
8
chronic pain
8
sensory neuron
8
human
4

Similar Publications

Immunomodulatory Roles of Tonsil-Derived Mesenchymal Stem Cells.

Crit Rev Immunol

January 2025

State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.

Stemming from human immune organs, tonsil-derived mesenchymal stem cells (TMSCs) hold unique strengths in differentiation potential and immune regulatory functions. These characteristics make them valuable for therapeutic applications, particularly in regenerative medicine and autoimmune disease treatment, as they can modulate immune responses and promote tissue repair. Their ability to interact with various cell types and secrete a range of bioactive molecules further enhances their role in orchestrating healing processes, making them a promising avenue for innovative therapies aimed at restoring balance in the immune system and facilitating recovery from injury or disease.

View Article and Find Full Text PDF

Monoclonal gammopathy-associated myopathies (MGAMs) are rare yet treatable myopathies that occur in association with monoclonal gammopathies. These myopathies include light chain (AL) amyloidosis myopathy, sporadic late-onset nemaline myopathy (SLONM), scleromyxedema with associated myopathy, and newly reported monoclonal gammopathy-associated glycogen storage myopathy (MGGSM), including the vacuolar myopathy with monoclonal gammopathy and stiffness. All these 4 distinct subtypes of MGAMs typically present in patients aged 40 or older, frequently with a subacute onset of rapidly progressive proximal and axial muscle weakness.

View Article and Find Full Text PDF

SREBP-mediated Signaling Restores Stem Cell Niche Properties in Human Lung Fibroblasts.

Am J Respir Cell Mol Biol

September 2025

INSERM U955 , Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU A-TVB France, Creteil, France;

Emphysema is characterized by chronic alveolar destruction. Lipofibroblasts (LIF) are crucial in the stem cell niche surrounding alveolar type II (AT2) cells and may contribute to alveolar regeneration. We aim to determine whether emphysema is associated with LIF reduction and whether Sterol regulatory binding protein (SREBP) activation promotes LIF differentiation and fibroblast stem cell niche properties.

View Article and Find Full Text PDF

Microglia regulate neuronal circuit plasticity. Disrupting their homeostatic function has detrimental effects on neuronal circuit health. Neuroinflammation contributes to the onset and progression of neurodegenerative diseases, including Alzheimer's disease (AD), with several microglial activation genes linked to increased risk for these conditions.

View Article and Find Full Text PDF

Microglia contribute to bipolar depression through Serinc2-dependent phospholipid synthesis.

Proc Natl Acad Sci U S A

September 2025

State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China.

Although clinical research has revealed microglia-related inflammatory and immune responses in bipolar disorder (BD) patient brains, it remains unclear how microglia contribute to the pathogenesis of BD. Here, we demonstrated that Serinc2 is associated with susceptibility to BD and showed a reduced expression in BDII patient plasma, which correlated with the disease severity. Using induced pluripotent stem cell (iPSC) models of sporadic and familial BDII patients, we found that Serinc2 expression showed deficits in iPSC-derived microglia-like cells, resulting in decreased synaptic pruning.

View Article and Find Full Text PDF