Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Progressive axon degeneration is a common pathological feature of neurodegenerative diseases. Cdc42 is a member of the Rho GTPase family that participates in axonogenesis. GSK-3β is a serine/threonine kinase highly implicated in neuronal development and neurodegeneration. This study aimed to examine whether cdc42 promotes axonogenesis by regulating GSK-3β activity.

Methods: Hippocampal neurons were isolated from neonatal Sprague-Dawley rats and transfected with designated plasmid vectors to alter the activities of cdc42 and GSK-3β. LiCl treatment was used to inhibit the GSK-3β activity in primary neurons. GSK-3β activity was determined by an enzyme activity assay kit. Immunofluorescence staining was used to detect axons stained with anti-Tau-1 antibody and dendrites stained with anti-MAP2 antibody.

Results: Transfection with an active cdc42 mutant (cdc42F28L) decreased the activity of GSK-3β and induced axonogenesis in primary rat hippocampal neurons, while transfection with a negative cdc42 mutant (cdc42N17) resulted an opposite effect. Moreover, transfection with plasmid vectors carrying wild-type GSK-3β or a constitutively active GSK3β mutant (GSK-3β S9A) increased the activity of GSK-3β and attenuated axonogenesis of primary hippocampal neurons with excessive cdc42 activity, whereas inhibition of GSK-3β by LiCl abolished the inhibitory effect of the negative cdc42 mutant on axonogenesis.

Conclusions: This study suggests that cdc42 induces axonogenesis of primary rat hippocampal neurons via inhibiting GSK-3β activity. These findings support further investigation into the mechanisms of cdc42/GSK-3β-mediated axonogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.31083/j.jin2105133DOI Listing

Publication Analysis

Top Keywords

hippocampal neurons
20
axonogenesis primary
16
gsk-3β activity
12
cdc42 mutant
12
gsk-3β
11
cdc42
9
cdc42 promotes
8
promotes axonogenesis
8
primary hippocampal
8
neurons inhibiting
8

Similar Publications

Background: Staphylococcus epidermidis (SE) is a predominant hospital-acquired bacterium leading to late-onset sepsis in preterm infants. Recent findings have suggested that postnatal S. epidermidis infection is associated with short-term neurodevelopmental consequences.

View Article and Find Full Text PDF

Introduction: 5-Hydroxymethyl furfural (5-HMF) is a furan compound with a molecular formula of CHO. Studies have found that 5-HMF has many pharmacological effects, such as improving hemorheology, anti-inflammatory, antioxidant activity and anti-myocardial ischemia. Identifying the preventive effect of 5-HMF against ischemic stroke and its possible mechanism was the aim of this investigation.

View Article and Find Full Text PDF

Neuronal insulin signaling is essential for regulating glucose metabolism and cognitive functions in the brain. Disruptions cause neuronal insulin resistance, potentially causing type 2 diabetes (T2D) and Alzheimer's disease (AD). Therefore, we investigated alternative pathways that maintain glucose homeostasis beyond traditional insulin signaling.

View Article and Find Full Text PDF

Microglia, the central nervous system's resident macrophages, are critical for immune defense, protecting neurons during infection. Their role in postnatal brain development, particularly after injury, remains unclear. Nucling, a protein up-regulated during cardiac muscle differentiation, regulates NF-κB, influencing apoptosis and cell proliferation.

View Article and Find Full Text PDF

Background And Purpose: The pathological role of the bile acid receptor TGR5/GPBA in Alzheimer's disease (AD) is not fully understood. We investigated the pharmacological effects and mechanisms of TGR5 in AD model mice.

Experimental Approach: TGR5 expression was assessed in AD mice using immunofluorescence and immunoblotting.

View Article and Find Full Text PDF