Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

An anthraquinone dye underwent supramolecular polymerization, affording 2D-monolayered nanosheets in a kinetically controlled state. The nanosheets then transformed into hierarchically chiral aggregates in a thermodynamically controlled step. The unanticipated role played by pathway complexity was clearly unravelled in this work, highlighting the diversified pathways in the supramolecular polymerization of various building blocks.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2nr04404hDOI Listing

Publication Analysis

Top Keywords

supramolecular polymerization
12
anthraquinone dye
8
chiral aggregates
8
2d-monolayered nanosheets
8
unanticipated role
8
pathway complexity
8
hierarchically supramolecular
4
polymerization anthraquinone
4
dye chiral
4
aggregates 2d-monolayered
4

Similar Publications

Liquid crystal elastomers (LCEs) are important soft actuators that show strong promise in many fields where traditional rigid actuators or robotics are impractical. However, their real-world applications are lacking primarily due to inadequate actuation performance and complicated fabrication processes. Here, a novel design is reported that significantly enhances actuation performance while simplifying the fabrication process.

View Article and Find Full Text PDF

The supramolecular organization of functional molecules at the mesoscopic level influences their material properties. Typically, planar π-conjugated (disc- or linear-shaped) molecules tend to undergo one-dimensional (1D) stacking, whereas two-dimensional (2D) organization from such building blocks is seldom observed in spite of their technological potential. Herein, we rationally achieve both 1D and 2D organizations from a single planar, π-conjugated molecular system competitive interactions.

View Article and Find Full Text PDF

Multivalent binding and the resulting dynamical clustering of receptors and ligands are known to be key features in biological interactions. For optimizing biomaterials capable of similar dynamical features, it is essential to understand the first step of these interactions, namely the multivalent molecular recognition between ligands and cell receptors. Here, we present the reciprocal cooperation between dynamic ligands in supramolecular polymers and dynamic receptors in model cell membranes, determining molecular recognition and multivalent binding via receptor clustering.

View Article and Find Full Text PDF

Lignin-Based Functional Materials.

Biomacromolecules

September 2025

Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 58, Stockholm 10044, Sweden.

Lignin, traditionally considered a low-value byproduct of the pulp and paper industry, has gained significant attention in recent years as a sustainable precursor for the development of functional materials. This paradigm shift is driven by recent studies exploring the structure-property-performance relationships of lignin-based functional materials, which have provided valuable insights for selective chemical functionalization or pretreatment of lignin. Furthermore, the use of complementary analytical techniques has helped to shed light into lignin's complex and heterogeneous structure, opening new avenues for chemical modification.

View Article and Find Full Text PDF