98%
921
2 minutes
20
Two-dimensional graphene has remarkable properties that are revolutionary in many applications. Scrolling monolayer graphene with precise tunability would create further potential for niche applications but this has proved challenging. We have now established the ability to fabricate monolayer graphene scrolls in high yield directly from graphite flakes under non-equilibrium conditions at room temperature in dynamic thin films of liquid. Using conductive atomic force microscopy we demonstrate that the graphene scrolls form highly conducting electrical contacts to highly oriented pyrolytic graphite (HOPG). These highly conducting graphite-graphene contacts are attractive for the fabrication of interconnects in microcircuits and align with the increasing interest in building all sp-carbon circuits. Above a temperature of 450 °C the scrolls unravel into buckled graphene sheets, and this process is understood on a theoretical basis. These findings augur well for new applications, in particular for incorporating the scrolls into miniaturized electronic devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417623 | PMC |
http://dx.doi.org/10.1039/c9na00184k | DOI Listing |
JMIR Res Protoc
September 2025
National Institute of Public Health, University of Southern Denmark, Copenhagen K, Denmark.
Background: The high and increasing rate of poor mental health among young people is a matter of global concern. Experiencing poor mental health during this formative stage of life can adversely impact interpersonal relationships, academic and professional performance, and future health and well-being if not addressed early. However, only a few of those in need seek help.
View Article and Find Full Text PDFJCO Clin Cancer Inform
September 2025
USC Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA.
Purpose: To evaluate a generative artificial intelligence (GAI) framework for creating readable lay abstracts and summaries (LASs) of urologic oncology research, while maintaining accuracy, completeness, and clarity, for the purpose of assessing their comprehension and perception among patients and caregivers.
Methods: Forty original abstracts (OAs) on prostate, bladder, kidney, and testis cancers from leading journals were selected. LASs were generated using a free GAI tool, with three versions per abstract for consistency.
Phys Rev Lett
August 2025
Indian Institute of Science, Centre for Condensed Matter Theory, Department of Physics, Bengaluru 560 012, India.
We present a detailed analytical and numerical examination, on square and triangular lattices, of the nonreciprocal planar spin model introduced in Dadhichi et al. [Phys. Rev.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Peng Huanwu Center for Fundamental Theory, Hefei, Anhui 230026, China.
We study nonperturbative effects of torus partition function of the TT[over ¯]-deformed 2D conformal field theory (CFT) by resurgence in this Letter and a companion paper. The deformed partition function can be written as an infinite series of the deformation parameter λ. We develop highly efficient methods to compute perturbative coefficients in the λ expansion.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Okayama University, Department of Physics, Okayama 700-8530, Japan.
The doped topological insulator Cu_{x}Bi_{2}Se_{3} has attracted considerable attention as a new platform for studying novel properties of spin-triplet and topological superconductivity. In this work, we performed synchrotron x-ray diffraction measurements on Cu_{x}Bi_{2}Se_{3} (0.24≤x≤0.
View Article and Find Full Text PDF