Pearls & Oy-sters: Deep Phenotyping of Abnormal Eye Movements Advances the Detection of Gerstmann-Sträussler-Scheinker Syndrome.

Neurology

From the Department of Neurology (A.M.P., W.M., A.B., K.E.G.), John Hopkins University School of Medicine, Baltimore, MD; andDepartment of Genetic Medicine (W.M.), John Hopkins University School of Medicine, Baltimore, MD.

Published: November 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A 58-year-old previously healthy woman presents with 3 years of rapidly progressive ataxia, parkinsonism, dysautonomia, peripheral neuropathy, leg weakness, spasticity, hyperreflexia, and mild vertical-gaze palsy. She has a matrilineal family history of neurodegenerative diseases. She was initially postulated to have spinocerebellar ataxia or atypical parkinsonism with cerebellar features. However, on closer inspection, her abnormal extraocular eye movements suggested rare mimicking disorders such as prion disease as part of the differential diagnosis, requiring further evaluation. This case highlights how deep phenotyping can open new diagnostic considerations, inform additional workup, and yield the precise diagnosis of Gerstmann-Sträussler-Scheinker syndrome (GSS).

Download full-text PDF

Source
http://dx.doi.org/10.1212/WNL.0000000000201321DOI Listing

Publication Analysis

Top Keywords

deep phenotyping
8
eye movements
8
gerstmann-sträussler-scheinker syndrome
8
pearls oy-sters
4
oy-sters deep
4
phenotyping abnormal
4
abnormal eye
4
movements advances
4
advances detection
4
detection gerstmann-sträussler-scheinker
4

Similar Publications

We propose an innovative technology to classify the Mechanism of Action (MoA) of antimicrobials and predict their novelty, called HoloMoA. Our rapid, robust, affordable and versatile tool is based on the combination of time-lapse Digital Inline Holographic Microscopy (DIHM) and Deep Learning (DL). In combination with hologram reconstruction.

View Article and Find Full Text PDF

Survey on sampling conditioned brain images and imaging measures with generative models.

Biomed Eng Lett

September 2025

Computer Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro. Nam-Gu, Pohang, Gyeongbuk 37673 Korea.

Generative models have become innovative tools across various domains, including neuroscience, where they enable the synthesis of realistic brain imaging data that captures complex anatomical and functional patterns. These models, such as Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), and diffusion models, leverage deep learning to generate high-quality brain images while maintaining biological and clinical relevance. These models address critical challenges in brain imaging, e.

View Article and Find Full Text PDF

Uncovering differential tolerance to deletions versus substitutions with a protein language model.

Cell Syst

September 2025

Diabetes Center, University of California, San Francisco, CA, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA; Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA; Department of Bioengineering & Therapeutic

Deep mutational scanning (DMS) experiments have been successfully leveraged to understand genotype to phenotype mapping. However, the overwhelming majority of DMS have focused on amino acid substitutions. Thus, it remains unclear how indels differentially shape the fitness landscape relative to substitutions.

View Article and Find Full Text PDF

Cardiac macrophages and their functions in homeostasis and injury.

Atherosclerosis

August 2025

Institute for Clinical Chemistry and Laboratory Medicine, UniversityHospital and Faculty of Medicine, TU Dresden, 01307, Dresden, Germany; National Center for Tumor Diseases, Partner Site Dresden, 01307, Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University

Due to their remarkable plasticity, macrophages can adapt to diverse environments and challenges therein, thereby exerting tissue-specific and context-specific functions. Macrophages are the most frequent immune cell population present in the heart and contribute substantially to cardiac homeostasis and function. Moreover, macrophages are key regulators throughout all stages of heart injury, acquiring diverse phenotypes that can either ameliorate or exacerbate cardiac pathology in a context-dependent manner.

View Article and Find Full Text PDF

Clinical Phenotype, Predictors and Early Biomarkers of Dyskinetic Cerebral Palsy Prognosis.

Pediatr Neurol

August 2025

Department of Neurology & Neurosurgery, McGill University, Montréal, Québec, Canada; Department of Pediatrics, McGill University, Montréal, Québec, Canada.

Background: Dyskinetic cerebral palsy (DCP) is a severe subtype of cerebral palsy in which children often present substantial functional impairment and multiple comorbidities. Our knowledge of the clinical picture of DCP is limited and our understanding of which markers best predict later impairment is scarce. This study aims to describe the presentation of DCP and examine the value of gestational age (GA) and magnetic resonance imaging (MRI) findings as early markers of eventual DCP prognosis.

View Article and Find Full Text PDF