Direct visualizing of paracetamol immediate release tablet disintegration in vivo and in vitro.

Eur J Pharm Biopharm

Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark. Electronic address:

Published: November 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The purpose of the present study was to study tablet disintegration by direct visualization, in vivo and in vitro. Based on literature data, a standard conventional paracetamol (CP) tablet, Panodil®, and a rapidly absorbed paracetamol (RP) tablet, Panodil® Zapp, were chosen as model systems to study tablet disintegration in the human stomach. Based on the obtained in vivo results, an in vitro disintegration method was designed to reproduce the visualized disintegration process occurring in the human stomach. For the clinical study, CP and RP tablets fastened to digital endoscopic camera capsules were administered to fasted human volunteers (n = 4). The disintegration time and process were visualized by the real time video recordings, using the endoscopic camera capsule. The average disintegration time was found to be 26 ± 13 min and 10 ± 7 min, for CP (n = 4) and RP (n = 4) tablets, respectively. It was possible to reproduce the in vivo disintegration data in vitro using a USP 2 dissolution apparatus with 250 mL of viscous Fasted State Simulated Gastric Fluid (vFaSSGF*), simulating the rheological profile of human fasted state gastric fluid following administration of a glass of water. The viscosity of the simulated fasted state gastric fluid was found to have a large impact on the disintegration time of the tested immediate release tablets. Therefore, it is recommended to mimic gastric fluid viscosity during in vitro tablet disintegration studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2022.09.007DOI Listing

Publication Analysis

Top Keywords

tablet disintegration
16
gastric fluid
16
vivo vitro
12
disintegration time
12
fasted state
12
disintegration
10
study tablet
8
paracetamol tablet
8
tablet panodil®
8
human stomach
8

Similar Publications

Biorelevant simulation of GI variability and its impact on the release behavior of non-disintegrating formulations: A case study using DHSI-IV (NERDT) system as a novel in vitro tool.

Int J Pharm

September 2025

Life Quality (LQ) Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, China. Electronic address:

Gastrointestinal (GI) physiological variability significantly influences dissolution and bioavailability of non-disintegrating solid drug systems. This study employed the dynamic human stomach-intestine (DHSI-IV, branded as NERDT) system to characterize how gastric emptying kinetics and intestinal environmental dynamics affect drug release, using extended-release metformin matrix tablets (Glucophage XR®) and metformin osmotic pump tablets (Nida®) as model formulations. The DHSI-IV (NERDT) system accurately simulated three fasting-state gastric emptying profiles (30-120 min complete emptying) with excellent fit to the modified Elashoff model (R = 0.

View Article and Find Full Text PDF

Development of benznidazole orally disintegrating tablets for paediatric patients.

J Pharm Pharmacol

September 2025

Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Cátedra de Tecnología Farmacéutica II, Universidad de Buenos Aires, C1113AAD Buenos Aires, Argentina.

Objectives: To develop the orphan drug benznidazole (BNZ) in orally disintegrating tablets, for the neglected disease American Trypanosomiasis (Chagas disease) therapy. Although children are highly affected by this disease, there are no specific commercial pharmaceutical preparations for this age group in Argentina and in many other countries.

Methods: In the production process, co-milling in a ball mill was applied to enhance dissolution rates, followed by direct compression.

View Article and Find Full Text PDF

Objectives: The study aimed to combine instant-release and mini-tablet methodologies to develop novel orally disintegrating mini-tablets (ODMTs) for a frequently pescribed antibiotic, cefixime trihydrate (CT), in paediatric patients.

Materials And Methods: CT-loaded microcapsules were prepared using Eudragit EPO and Hydroxy Propyl Methyl Cellulose E50 by spray drying technique. The optimized microcapsules were mixed with co-processed ready-to-use tableting excipients, Ludiflash and Pearlitol 200SD, in different proportions and then compressed into ODMTs and evaluated.

View Article and Find Full Text PDF

Artificial Intelligence (AI) is emerging as a valuable tool in pharmaceutical formulations, including the development of effervescent tablets (ETs). This review highlights how AI techniques are being explored to support ET formulation designs, optimize component ratios, predict disintegration and dissolution behavior, and control reactions through artificial neural networks, support vector machines, and machine learning. These techniques have been applied in recent studies to enhance stability, improve disintegration times, and flavor masking.

View Article and Find Full Text PDF

Importance: Effective and well-tolerated pharmacotherapies for generalized anxiety disorder (GAD), which is one of the most common psychiatric disorders, are needed.

Objective: To determine the dose-response relationship of MM120 (lysergide D-tartrate) in adults with moderate to severe GAD.

Design, Settings, And Participants: This phase 2b, multicenter, randomized, double-blind, placebo-controlled study enrolled 198 adults aged 18 to 74 years with a primary GAD diagnosis who presented with moderate to severe symptoms (defined by a Hamilton Anxiety Rating Scale [HAM-A] score ≥20) and was conducted at 22 outpatient psychiatric research sites in the US from August 2022 to August 2023.

View Article and Find Full Text PDF