A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Identifying the roles of imine and alkyne linkages in determining the photocatalytic hydrogen evolution over thiadiazole-based covalent organic frameworks. | LitMetric

Identifying the roles of imine and alkyne linkages in determining the photocatalytic hydrogen evolution over thiadiazole-based covalent organic frameworks.

Dalton Trans

Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.

Published: October 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Covalent organic frameworks (COFs) have emerged as an extremely promising material for photocatalytic water splitting for hydrogen production. However, their photocatalytic performance is seriously affected by the properties of their donors, acceptors and linkages. So far, few studies have been reported on the key roles of the linkages of a specific COF in improving its photocatalytic hydrogen production performance. Herein, this study designed and synthesized two thiadiazole-based COFs linked by imine and alkyne bonds. The results show that the photocatalytic hydrogen production performance of imine-linked COFs (TeTz-COF1) is 19.6 times higher than that of alkyne-linked COFs (TeTz-COF2). Impressively, TeTz-COF1 achieves an apparent quantum efficiency of 3.5% at 475 nm due to the presence of imine bonds. The experimental results confirm that TeTz-COF1 with imine linkages shows higher photocurrent density, lower photocurrent resistance, and longer fluorescence lifetime than TeTz-COF2 with alkyne linkages. Meanwhile, the well-defined density functional theory (DFT) calculations further suggest that both the imine bond and the acetylene bond belong to the HOMO orbitals. Particularly, the imine bonds endow TeTz-COF1 with more delocalized orbital occupation and smaller work functions, thus leading to its lower excited state energy, stronger carrier separation ability and faster electron migration capability. Both theoretical analysis and the experimental results prove that the presence of imine bonds in TeTz-COF1 can enable the efficient separation and fast transport of photogenerated carriers and high reducing ability of photogenerated electrons. This work may provide important guiding significance for the development of new COFs in the direction of photocatalytic water splitting for hydrogen production.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2dt02056dDOI Listing

Publication Analysis

Top Keywords

hydrogen production
16
photocatalytic hydrogen
12
imine bonds
12
imine alkyne
8
alkyne linkages
8
covalent organic
8
organic frameworks
8
photocatalytic water
8
water splitting
8
splitting hydrogen
8

Similar Publications