Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The objective of this work was to evaluate the fungal community assembly and function during food waste composting with Aneurinibacillus sp. LD3 (LD3) inoculant. Inoculation reduced the content of total organic carbon, moisture content, nitrate nitrogen, and nitrite nitrogen. The LD3 inoculant was able to drive the changes in the assembly of the fungal community. In particular, inoculation with LD3 not only increased the relative abundance of Ascomycota and Trichocomaceae_unclassified for lignocellulose degradation at the mesophilic and cooling stages but also reduced the relative abundances of the opportunistic human pathogen Candida. Saprotroph was the predominant fungal trophic mode in composting, and inoculation with LD3 has a better inactivation effect on animal and plant pathogenic fungi during composting. Furthermore, the variation of the fungal community after inoculation with LD3 was the largest explained by temperature (30.64%). These results implied that LD3 significantly regulated fungal composition and function of food waste composting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2022.127923 | DOI Listing |