Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sentiment analysis in research involves the processing and analysis of sentiments from textual data. The sentiment analysis for high resource languages such as English and French has been carried out effectively in the past. However, its applications are comparatively few for resource-poor languages due to a lack of textual resources. This systematic literature explores different aspects of Urdu-based sentiment analysis, a classic case of poor resource language. While Urdu is a South Asian language understood by one hundred and sixty-nine million people across the planet. There are various shortcomings in the literature, including limitation of large corpora, language parsers, and lack of pre-trained machine learning models that result in poor performance. This article has analyzed and evaluated studies addressing machine learning-based Urdu sentiment analysis. After searching and filtering, forty articles have been inspected. Research objectives have been proposed that lead to research questions. Our searches were organized in digital repositories after selecting and screening relevant studies. Data was extracted from these studies. Our work on the existing literature reflects that sentiment classification performance can be improved by overcoming the challenges such as word sense disambiguation and massive datasets. Furthermore, Urdu-based language constructs, including language parsers and emoticons, context-level sentiment analysis techniques, pre-processing methods, and lexical resources, can also be improved.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454799PMC
http://dx.doi.org/10.7717/peerj-cs.1032DOI Listing

Publication Analysis

Top Keywords

sentiment analysis
24
analysis techniques
8
language parsers
8
sentiment
7
analysis
6
language
5
techniques challenges
4
challenges opportunities
4
opportunities urdu
4
urdu language-based
4

Similar Publications

In this paper, we study the impact of momentum, volume and investor sentiment on U.S. tech sector stock returns using Principal Component Analysis-Hidden Markov Model (PCA-HMM) methodology.

View Article and Find Full Text PDF

Background: Lesbian, gay, bisexual, transgender, queer/questioning, intersex, asexual (LGBTQIA+) researchers and participants frequently encounter hostility in virtual environments, particularly on social media platforms where public commentary on research advertisements can foster stigmatization. Despite a growing body of work on researcher virtual hostility, little empirical research has examined the actual content and emotional tone of public responses to LGBTQIA+-focused research recruitment.

Objective: This study aimed to analyze the thematic patterns and sentiment of social media comments directed at LGBTQIA+ research recruitment advertisements, in order to better understand how virtual stigma is communicated and how it may impact both researchers and potential participants.

View Article and Find Full Text PDF

The COVID-19 pandemic has revealed the complex interplay between national self-interest and global cooperation. Media communication can contribute to the formation of national identity and promote nationalist themes, particularly in times of crisis. Media portrayals of the nation during a pandemic are informative, since nationalism, specifically health nationalism, may undermine the popular appetite for and effectiveness of global response efforts.

View Article and Find Full Text PDF

Diagnostic and transition accuracy of natural language processing in high risk for psychosis individuals: A systematic review.

Asian J Psychiatr

September 2025

Department of Psychiatry and Mental Health, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Translational Psychiatry Laboratory (Psiquislab), Faculty of Medicine, Universidad de Chile, Santiago, Chile; Millennium Nucleus to Improve the Mental Health of Adolescents and Youths (IMHAY), San

Background: Schizophrenia spectrum disorders often emerge in adolescence or early adulthood and are a leading cause of global disability. Early identification of clinical high‑risk for psychosis (CHR‑P) can reduce comorbidity and shorten untreated psychosis duration, yet clinician‑administered tools (e.g.

View Article and Find Full Text PDF

-Aspect-Based Sentiment Analysis (ABSA) is considered a unique variant, which intends to identify the opinions regarding delicate topics. However, it is a neglected topic of study, ABSA attempts to find out the sentiment polarity on particular characteristics within statements, enabling more precise mining of consumers' emotional polarities regarding various aspects. The conversion of the conventional rating-aided recommendation approach into an effective aspect-aided procedure is made easier by this evaluation.

View Article and Find Full Text PDF