98%
921
2 minutes
20
CircRNAs have been the focus of research in recent years. They are differentially expressed in various human tumors and can regulate oncogenes and tumor suppressor genes expression through various mechanisms. The diversity, stability, evolutionary conservatism and cell- or tissue-specific expression patterns of circRNAs also endow them with important regulatory roles in promoting or inhibiting tumor cells malignant biological behaviors progression. More interestingly, emerging studies also found that circRNAs can regulate not only other genes expression, but also their parental gene expression and thus influence tumors development. Apart from some conventional features, circRNAs have a certain specificity in the regulation of parental gene expression, with a higher proportion affecting parental gene transcription and easier translation into protein to regulate parental gene expression. CircRNAs are generally thought to be unable to produce proteins and therefore the protein-coding ability exhibited by circRNAs in regulating parental gene expression is unique and indicates that the regulatory effects of parental gene expression by circRNAs are not only a competitive binding relationship, but also a more complex molecular relationship between circRNAs and parental gene, which deserves further study. This review summarizes the molecular mechanisms of circRNAs regulating parental gene expression and their biological roles in tumorigenesis and development, aiming to provide new ideas for the clinical application of circRNAs in tumor-targeted therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9453195 | PMC |
http://dx.doi.org/10.3389/fonc.2022.947775 | DOI Listing |
mSphere
September 2025
Department of Chemistry, Michigan State University, East Lansing, Michigan, USA.
The structural role of β-1,6-glucan has remained under-investigated in filamentous fungi compared to other fungal cell wall polymers, and previous studies have shown that the cell wall of the mycelium of did not contain β-1,6-glucans. In contrast, the current solid-state NMR investigations showed that the conidial cell wall contained a low amount of β-1,6-glucan. ssNMR comparisons of the and β-1,6-glucans showed they are structurally similar.
View Article and Find Full Text PDFmBio
September 2025
School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
In the opportunistic pathogen , hyphal growth and virulence factor expression are regulated by environmental and chemical cues. Farnesol is a secreted autoregulatory molecule that represses filamentation. It is derived from farnesyl pyrophosphate (FPP), an ergosterol biosynthesis pathway intermediate.
View Article and Find Full Text PDFBioinform Adv
August 2025
Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
Motivation: Advances in high-throughput technologies have shifted the focus from bulk to single cell or spatial transcriptomic and proteomic analysis of tissues and cell cultures. The resulting increase in gene and/or protein lists leads to the subsequent growth of up- and downregulated pathways lists. This trend creates the need for pathway-network based integration strategies that allow quick exploration of shared and distinct mechanisms across datasets.
View Article and Find Full Text PDFJ Child Psychol Psychiatry
September 2025
Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
Background: Comorbidity and heterogeneity in psychiatric disorders may stem from a general psychopathology (p) factor influenced by both genetic and environmental factors. Although the relative contributions of these influences on psychopathology are established, the longitudinal associations between the p-factor and specific environmental exposures and the aetiology of these associations across development are not well understood. Here, we examine whether twin-rated home environment contributes to changes in the p-factor over time or, conversely, whether the p-factor influences twin-rated home environment, reflecting potential evocative gene-environment processes.
View Article and Find Full Text PDFPsychol Med
September 2025
Faculty of Behavioral and Social Sciences, Department of Pedagogy and Educational Sciences, https://ror.org/012p63287University of Groningen, Groningen, The Netherlands.
Background: Depression runs in families, with both genetic and environmental mechanisms contributing to intergenerational continuity, though these mechanisms have often been studied separately. This study examined the interplay between genetic and environmental influences in the intergenerational continuity of depressive symptoms from parents to offspring.
Methods: Using data from the Dutch TRAILS cohort ( = 2201), a prospective, genetically informed, multiple-generation study, we examined the association between parents' self-reported depressive symptoms (reported at mean age of 41 years) and offspring depressive symptoms, self-reported nearly two decades later, in adulthood (mean age: 29 years).