Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Systems biology and systems neurophysiology in particular have recently emerged as powerful tools for a number of key applications in the biomedical sciences. Nevertheless, such models are often based on complex combinations of multiscale (and possibly multiphysics) strategies that require ad hoc computational strategies and pose extremely high computational demands. Recent developments in the field of deep neural networks have demonstrated the possibility of formulating nonlinear, universal approximators to estimate solutions to highly nonlinear and complex problems with significant speed and accuracy advantages in comparison with traditional models. After synthetic data validation, we use so-called physically constrained neural networks (PINN) to simultaneously solve the biologically plausible Hodgkin-Huxley model and infer its parameters and hidden time-courses from real data under both variable and constant current stimulation, demonstrating extremely low variability across spikes and faithful signal reconstruction. The parameter ranges we obtain are also compatible with prior knowledge. We demonstrate that detailed biological knowledge can be provided to a neural network, making it able to fit complex dynamics over both simulated and real data.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC48229.2022.9871971DOI Listing

Publication Analysis

Top Keywords

neural networks
12
physically constrained
8
constrained neural
8
real data
8
neural
4
networks inferring
4
inferring physiological
4
physiological system
4
system models
4
models systems
4

Similar Publications

Background: Circumcision is a widely practiced procedure with cultural and medical significance. However, certain penile abnormalities-such as hypospadias or webbed penis-may contraindicate the procedure and require specialized care. In low-resource settings, limited access to pediatric urologists often leads to missed or delayed diagnoses.

View Article and Find Full Text PDF

This study aimed to develop a deep-learning model for the automatic classification of mandibular fractures using panoramic radiographs. A pretrained convolutional neural network (CNN) was used to classify fractures based on a novel, clinically relevant classification system. The dataset comprised 800 panoramic radiographs obtained from patients with facial trauma.

View Article and Find Full Text PDF

Sparse Learning Enabled by Constraints on Connectivity and Function.

Phys Rev Lett

August 2025

Northeastern University, Department of Physics, Center for Theoretical Biological Physics, Boston, Massachusetts 02115, USA.

Sparse connectivity is a hallmark of the brain and a desired property of artificial neural networks. It promotes energy efficiency, simplifies training, and enhances the robustness of network function. Thus, a detailed understanding of how to achieve sparsity without jeopardizing network performance is beneficial for neuroscience, deep learning, and neuromorphic computing applications.

View Article and Find Full Text PDF

Deep feature engineering for accurate sperm morphology classification using CBAM-enhanced ResNet50.

PLoS One

September 2025

School of Computer Science, CHART Laboratory, University of Nottingham, Nottingham, United Kingdom.

Background And Objective: Male fertility assessment through sperm morphology analysis remains a critical component of reproductive health evaluation, as abnormal sperm morphology is strongly correlated with reduced fertility rates and poor assisted reproductive technology outcomes. Traditional manual analysis performed by embryologists is time-intensive, subjective, and prone to significant inter-observer variability, with studies reporting up to 40% disagreement between expert evaluators. This research presents a novel deep learning framework combining Convolutional Block Attention Module (CBAM) with ResNet50 architecture and advanced deep feature engineering (DFE) techniques for automated, objective sperm morphology classification.

View Article and Find Full Text PDF

Cortical networks with multiple interneuron types generate oscillatory patterns during predictive coding.

PLoS Comput Biol

September 2025

Faculty of Science, Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.

Predictive coding (PC) proposes that our brains work as an inference machine, generating an internal model of the world and minimizing predictions errors (i.e., differences between external sensory evidence and internal prediction signals).

View Article and Find Full Text PDF