Electrophysiological and neuroimaging studies have revealed how the brain encodes various visual categories and concepts. An open question is how combinations of multiple visual concepts are represented in terms of the component brain patterns: are brain responses to individual concepts composed according to algebraic rules? To explore this, we generated "conceptual perturbations" in neural space by averaging fMRI responses to images with a shared concept (e.g.
View Article and Find Full Text PDFBackground: Computed tomography scans are widely used in everyday medical practice due to speed, image reliability, and detectability of a wide range of pathologies. Each scan exposes the patient to a radiation dose, and performing a fast estimation of the effective dose (E) is an important step for radiological safety. The aim of this work is to estimate E from patient and CT acquisition parameters in the absence of a dose-tracking software exploiting machine learning.
View Article and Find Full Text PDFComput Methods Programs Biomed
November 2024
Introduction: We propose a novel approach for the non-invasive quantification of dynamic PET imaging data, focusing on the arterial input function (AIF) without the need for invasive arterial cannulation.
Methods: Our method utilizes a combination of three-dimensional depth-wise separable convolutional layers and a physically informed deep neural network to incorporatea priori knowledge about the AIF's functional form and shape, enabling precise predictions of the concentrations of [C]PBR28 in whole blood and the free tracer in metabolite-corrected plasma.
Results: We found a robust linear correlation between our model's predicted AIF curves and those obtained through traditional, invasive measurements.
Decoding visual representations from human brain activity has emerged as a thriving research domain, particularly in the context of brain-computer interfaces. Our study presents an innovative method that employs knowledge distillation to train an EEG classifier and reconstruct images from the ImageNet and THINGS-EEG 2 datasets using only electroencephalography (EEG) data from participants who have viewed the images themselves (i.e.
View Article and Find Full Text PDFBrain decoding is a field of computational neuroscience that aims to infer mental states or internal representations of perceptual inputs from measurable brain activity. This study proposes a novel approach to brain decoding that relies on semantic and contextual similarity.We use several functional magnetic resonance imaging (fMRI) datasets of natural images as stimuli and create a deep learning decoding pipeline inspired by the bottom-up and top-down processes in human vision.
View Article and Find Full Text PDFImaging Neurosci (Camb)
May 2024
To-date, brain decoding literature has focused on single-subject studies, that is, reconstructing stimuli presented to a subject under fMRI acquisition from the fMRI activity of the same subject. The objective of this study is to introduce a generalization technique that enables the decoding of a subject's brain based on fMRI activity of another subject, that is, cross-subject brain decoding. To this end, we also explore cross-subject data alignment techniques.
View Article and Find Full Text PDFBackground: The willingness to trust predictions formulated by automatic algorithms is key in a wide range of domains. However, a vast number of deep architectures are only able to formulate predictions without associated uncertainty.
Purpose: In this study, we propose a method to convert a standard neural network into a Bayesian neural network and estimate the variability of predictions by sampling different networks similar to the original one at each forward pass.
Neurosci Biobehav Rev
February 2024
Reactive response inhibition cancels impending actions to enable adaptive behavior in ever-changing environments and has wide neuropsychiatric implications. A canonical paradigm to measure the covert inhibition latency is the stop-signal task (SST). To probe the cortico-subcortical network underlying motor inhibition, transcranial magnetic stimulation (TMS) has been applied over central nodes to modulate SST performance, especially to the right inferior frontal cortex and the presupplementary motor area.
View Article and Find Full Text PDFThis study delves into the crucial aspect of network topology in artificial neural networks (NNs) and its impact on model performance. Addressing the need to comprehend how network structures influence learning capabilities, the research contrasts traditional multilayer perceptrons (MLPs) with models built on various complex topologies using novel network generation techniques. Drawing insights from synthetic datasets, the study reveals the remarkable accuracy of complex NNs, particularly in high-difficulty scenarios, outperforming MLPs.
View Article and Find Full Text PDFAlzheimers Res Ther
December 2023
Background: Identifying individuals with mild cognitive impairment (MCI) who are likely to progress to Alzheimer's disease and related dementia disorders (ADRD) would facilitate the development of individualized prevention plans. We investigated the association between MCI and comorbidities of ADRD. We examined the predictive potential of these comorbidities for MCI risk determination using a machine learning algorithm.
View Article and Find Full Text PDFTraditional imaging techniques for breast cancer (BC) diagnosis and prediction, such as X-rays and magnetic resonance imaging (MRI), demonstrate varying sensitivity and specificity due to clinical and technological factors. Consequently, positron emission tomography (PET), capable of detecting abnormal metabolic activity, has emerged as a more effective tool, providing critical quantitative and qualitative tumor-related metabolic information. This study leverages a public clinical dataset of dynamic F-Fluorothymidine (FLT) PET scans from BC patients, extending conventional static radiomics methods to the time domain-termed as 'Dynomics'.
View Article and Find Full Text PDFRadiomics investigates the predictive role of quantitative parameters calculated from radiological images. In oncology, tumour segmentation constitutes a crucial step of the radiomic workflow. Manual segmentation is time-consuming and prone to inter-observer variability.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2022
Positron emission tomography (PET) can reveal metabolic activity in a voxelwise manner. PET analysis is commonly performed in a static manner by analyzing the standardized uptake value (SUV) obtained from the plateau region of PET acquisitions. A dynamic PET acquisition can provide a map of the spatiotemporal concentration of the tracer in vivo, hence conveying information about radiotracer delivery to tissue, its interaction with the target and washout.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2022
Systems biology and systems neurophysiology in particular have recently emerged as powerful tools for a number of key applications in the biomedical sciences. Nevertheless, such models are often based on complex combinations of multiscale (and possibly multiphysics) strategies that require ad hoc computational strategies and pose extremely high computational demands. Recent developments in the field of deep neural networks have demonstrated the possibility of formulating nonlinear, universal approximators to estimate solutions to highly nonlinear and complex problems with significant speed and accuracy advantages in comparison with traditional models.
View Article and Find Full Text PDFDeep gray matter nuclei are the synaptic relays, responsible to route signals between specific brain areas. Dentate nuclei (DNs) represent the main output channel of the cerebellum and yet are often unexplored especially in humans. We developed a multimodal MRI approach to identify DNs topography on the basis of their connectivity as well as their microstructural features.
View Article and Find Full Text PDF