Enteric nervous system and intestinal epithelial regulation of the gut-brain axis.

J Allergy Clin Immunol

School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia; Hunter Medical Research Institute, New Lambton Heights, Australia. Electronic address:

Published: September 2022


Article Synopsis

  • The gut-brain axis describes a complex communication system between the gut and the brain, involving the intestinal lining, immune system, and microbiota, influencing both gut and nervous system functions.
  • Gut microbiota significantly impacts hormone and neurotransmitter production in the intestines, which can affect neuronal function and overall brain health.
  • Disruptions in gut microbiota are linked to various diseases in both the gut and the brain, including neurodegenerative and behavioral disorders, prompting ongoing research into these interactions in health and disease.

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The gut-brain axis describes a bidirectional interplay within the enteric environment between the intestinal epithelium, the mucosal immune system, and the microbiota with the enteric nervous system. This interplay provides a link between exogenous environmental stimuli such as nutrient sensing, and nervous system function, as well as a mechanism of feedback from cortical and sensory centers of the brain to enteric activities. The intestinal epithelium is one of the human body's largest sources of hormones and neurotransmitters, which have critical effects on neuronal function. The influence of the gut microbiota on these processes appears to be profound; yet to date, it has been insufficiently explored. Disruption of the intestinal microbiota is linked not only to diseases in the gut but also to brain symptomatology, including neurodegenerative and behavioral disorders (Parkinson disease, Alzheimer disease, autism, and anxiety and/or depression). In this review we discuss the cellular wiring of the gut-brain axis, with a particular focus on the epithelial and neuronal interaction, the evidence that has led to our current understanding of the intestinal role in neurologic function, and future directions of research to unravel this important interaction in both health and allergic disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaci.2022.07.015DOI Listing

Publication Analysis

Top Keywords

nervous system
12
gut-brain axis
12
enteric nervous
8
intestinal epithelium
8
intestinal
5
enteric
4
system
4
system intestinal
4
intestinal epithelial
4
epithelial regulation
4

Similar Publications

Gliomas are malignant tumors of the central nervous system, and one severe variant is called gliosarcoma. Photodynamic therapy (PDT) is a technique that stands out in the oncology area for minimizing side effects for the patient, triggering cell death at the site of irradiation, and can be used concomitantly with conventional treatments. This study aimed to evaluate the interaction of chlorine e6 with the cytoskeleton and mitochondria, as well as morphological changes and the death mechanism triggered after PDT.

View Article and Find Full Text PDF

Background And Purpose: To review the existing evidence on multiple timepoint assessments of optic nerve sheath diameter (ONSD) as an indicator of intraindividual variation of intracranial pressure (ICP).

Methods: A systematic search identified studies assessing intraindividual variation in ICP through multiple timepoint measurements of ONSD using ultrasonography. Meta-analysis of studies assessing intraindividual correlation coefficients between ONSD and ICP was performed using a random effects model, and we calculated the weighted correlation coefficient for the expected change in ICP associated with variations in ONSD.

View Article and Find Full Text PDF

Background And Purpose: Socioeconomic determinants of health impact childhood development and adult health outcomes. One key aspect is the physical environment and neighborhood where children live and grow. Emerging evidence suggests that neighborhood deprivation, often measured by the Area Deprivation Index (ADI), may influence neurodevelopment, but longitudinal and multimodal neuroimaging analyses remain limited.

View Article and Find Full Text PDF

Neuroinflammatory Consequences of Rhinovirus Infection in Human Epithelial and Neuronal Models.

Lung

September 2025

The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Belfast BT9 7BL, UK.

Introduction: Rhinovirus (RV) is the leading cause of exacerbations of lung disease. A sensory neuronal model, derived from human dental pulp stem cells and differentiated into peripheral neuronal equivalents (PNEs), was used to examine RV's effects on airway sensory nerves. We investigated whether RV can directly infect and alter PNEs or whether it exerts effects indirectly via the release of mediators from infected epithelial cells.

View Article and Find Full Text PDF

Initial findings linking Virtual Reality (VR)-based encoding to increased recollection at retrieval remain inconclusive due to heterogeneous study designs and dependence on behavioral data. To clarify under which circumstances VR-based encoding affects or enhances episodic memory retrieval, the fundamental question remains whether the encoding modality, i.e.

View Article and Find Full Text PDF