Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

SAMD9 and SAMD9L germline mutations have recently emerged as a new class of predispositions to pediatric myeloid neoplasms. Patients commonly have impaired hematopoiesis, hypocellular marrows, and a greater risk of developing clonal chromosome 7 deletions leading to MDS and AML. We recently demonstrated that expressing SAMD9 or SAMD9L mutations in hematopoietic cells suppresses their proliferation and induces cell death. Here, we generated a mouse model that conditionally expresses mutant Samd9l to assess the in vivo impact on hematopoiesis. Using a range of in vivo and ex vivo assays, we showed that cells with heterozygous Samd9l mutations have impaired stemness relative to wild-type counterparts, which was exacerbated by inflammatory stimuli, and ultimately led to bone marrow hypocellularity. Genomic and phenotypic analyses recapitulated many of the hematopoietic cellular phenotypes observed in patients with SAMD9 or SAMD9L mutations, including lymphopenia, and pinpointed TGF-β as a potential targetable pathway. Further, we observed nonrandom genetic deletion of the mutant Samd9l locus on mouse chromosome 6, mimicking chromosome 7 deletions observed in patients. Collectively, our study has enhanced our understanding of mutant Samd9l hematopoietic phenotypes, emphasized the synergistic role of inflammation in exaggerating the associated hematopoietic defects, and provided insights into potential therapeutic options for patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9621136PMC
http://dx.doi.org/10.1172/JCI158869DOI Listing

Publication Analysis

Top Keywords

mutant samd9l
16
samd9 samd9l
12
samd9l mutations
12
bone marrow
8
chromosome deletions
8
observed patients
8
samd9l
7
mutant
4
samd9l expression
4
expression impairs
4

Similar Publications

Clonal Elimination of the Pathogenic Allele as Diagnostic Pitfall in -Associated Neuropathy.

Genes (Basel)

December 2022

Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.

Background: Heterozygous gain-of-function variants in are associated with ataxia-pancytopenia syndrome (ATXPC) and monosomy 7 myelodysplasia and leukemia syndrome-1 (M7MLS1). Association with peripheral neuropathy has rarely been described.

Methods: Whole-exome sequencing (WES) from DNA extracted from peripheral blood was performed in a 10-year-old female presenting with demyelinating neuropathy, her similarly affected mother and the unaffected maternal grandparents.

View Article and Find Full Text PDF

Sterile α motif domain-containing 9 (SAMD9) and SAMD9-like (SAMD9L) syndromes are inherited bone marrow failure syndromes known for their frequent development of myelodysplastic syndrome with monosomy 7. In this issue of the JCI, Abdelhamed, Thomas, et al. report a mouse model with a hematopoietic cell-specific heterozygous Samd9l mutation knockin.

View Article and Find Full Text PDF

SAMD9 and SAMD9L germline mutations have recently emerged as a new class of predispositions to pediatric myeloid neoplasms. Patients commonly have impaired hematopoiesis, hypocellular marrows, and a greater risk of developing clonal chromosome 7 deletions leading to MDS and AML. We recently demonstrated that expressing SAMD9 or SAMD9L mutations in hematopoietic cells suppresses their proliferation and induces cell death.

View Article and Find Full Text PDF

New spinocerebellar ataxia subtype caused by mutation triggering mitochondrial dysregulation (SCA49).

Brain Commun

February 2022

Functional and Translational Neurogenetics Unit, Department of Neuroscience, Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain.

Spinocerebellar ataxias consist of a highly heterogeneous group of inherited movement disorders clinically characterized by progressive cerebellar ataxia variably associated with additional distinctive clinical signs. The genetic heterogeneity is evidenced by the myriad of associated genes and underlying genetic defects identified. In this study, we describe a new spinocerebellar ataxia subtype in nine members of a Spanish five-generation family from Menorca with affected individuals variably presenting with ataxia, nystagmus, dysarthria, polyneuropathy, pyramidal signs, cerebellar atrophy and distinctive cerebral demyelination.

View Article and Find Full Text PDF

Pediatric myelodysplastic syndromes (MDS) are a heterogeneous disease group associated with impaired hematopoiesis, bone marrow hypocellularity, and frequently have deletions involving chromosome 7 (monosomy 7). We and others recently identified heterozygous germline mutations in SAMD9 and SAMD9L in children with monosomy 7 and MDS. We previously demonstrated an antiproliferative effect of these gene products in non-hematopoietic cells, which was exacerbated by their patient-associated mutations.

View Article and Find Full Text PDF