Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Clinical trial protocols are the foundation for advancing medical sciences, however, the extraction of accurate and meaningful information from the original clinical trials is very challenging due to the complex and unstructured texts of such documents. Named entity recognition (NER) is a fundamental and necessary step to process and standardize the unstructured text in clinical trials using Natural Language Processing (NLP) techniques.

Methods: In this study we fine-tuned pre-trained language models to support the NER task on clinical trial eligibility criteria. We systematically investigated four pre-trained contextual embedding models for the biomedical domain (i.e., BioBERT, BlueBERT, PubMedBERT, and SciBERT) and two models for the open domains (BERT and SpanBERT), for NER tasks using three existing clinical trial eligibility criteria corpora. In addition, we also investigated the feasibility of data augmentation approaches and evaluated their performance.

Results: Our evaluation results using tenfold cross-validation show that domain-specific transformer models achieved better performance than the general transformer models, with the best performance obtained by the PubMedBERT model (F1-scores of 0.715, 0.836, and 0.622 for the three corpora respectively). The data augmentation results show that it is feasible to leverage additional corpora to improve NER performance.

Conclusions: Findings from this study not only demonstrate the importance of contextual embeddings trained from domain-specific corpora, but also shed lights on the benefits of leveraging multiple data sources for the challenging NER task in clinical trial eligibility criteria text.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9450226PMC
http://dx.doi.org/10.1186/s12911-022-01967-7DOI Listing

Publication Analysis

Top Keywords

clinical trial
20
trial eligibility
16
eligibility criteria
16
pre-trained language
8
language models
8
named entity
8
entity recognition
8
clinical trials
8
ner task
8
task clinical
8

Similar Publications

Background: Survivors of critical illness frequently face physical, cognitive and psychological impairments after intensive care. Sensorimotor impairments potentially have a negative impact on participation. However, comprehensive understanding of sensorimotor recovery and participation in survivors of critical illness is limited.

View Article and Find Full Text PDF

Background: Gastric cancer is one of the most common cancers worldwide, with its prognosis influenced by factors such as tumor clinical stage, histological type, and the patient's overall health. Recent studies highlight the critical role of lymphatic endothelial cells (LECs) in the tumor microenvironment. Perturbations in LEC function in gastric cancer, marked by aberrant activation or damage, disrupt lymphatic fluid dynamics and impede immune cell infiltration, thereby modulating tumor progression and patient prognosis.

View Article and Find Full Text PDF

Background: The treatment of mandibular angle fractures remains controversial, particularly regarding the method of fixation. The primary aim of this study was to compare surgical outcomes following treatment with 1-plate versus 2-plate fixation across two oral and maxillofacial surgery clinics. The secondary aim was to evaluate associations between patient-, trauma-, and procedure-specific factors with postoperative complications and to identify high-risk patients for secondary osteosynthesis.

View Article and Find Full Text PDF

Background: Avenanthramides (AVAs) and Avenacosides (AVEs) are unique to oats (Avena Sativa) and may serve as biomarkers of oat intake. However, information regarding their validity as food intake biomarkers is missing. We aimed to investigate critical validation parameters such as half-lives, dose-response, matrix effects, relative bioavailability under single dose, and in relation to the abundance of Feacalibacterium prausnitzii, and under repeated dosing, to understand the potential applications of AVAs and AVEs as biomarkers of oat intake.

View Article and Find Full Text PDF

Background: Post-viral syndromes, including long- and post-COVID, often lead to persistent symptoms such as fatigue and dyspnoea, affecting patients' daily lives and ability to work. The COVI-Care M-V trial examines whether interprofessional, patient-centred teleconsultations, initiated by general practitioners in cooperation with specialists, can help reduce symptom burden and improve care for patients.

Methods: To evaluate the effectiveness of the intervention under routine care conditions, a cluster-randomised controlled trial is being conducted.

View Article and Find Full Text PDF