Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The optical properties of quantum dots (QDs) in modified Möbius squared (MMS) potential are studied. To obtain the energy expressions and the wave functions, we solved the Schrödinger equation by using Nikiforov-Uvarov (NU) method. We investigated the linear, third-order nonlinear and total absorption coefficients (AC) and refractive index changes (RIC) using the density matrix. The numerical results show that the structure parameters and optical intensity have a strong influence on AC and RIC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9433689PMC
http://dx.doi.org/10.1016/j.heliyon.2022.e10387DOI Listing

Publication Analysis

Top Keywords

optical properties
8
quantum dots
8
modified möbius
8
möbius squared
8
linear nonlinear
4
nonlinear optical
4
properties spherical
4
spherical quantum
4
dots modified
4
squared potential
4

Similar Publications

A CoO/AgMoO/CeOternary nanocomposites photocatalyst was successfully synthesized through a straightforward ethanol-assisted chemical method. Comprehensive characterization of its structural and optical properties was conducted using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) analysis. XRD analysis confirmed the presence of CoO, AgMoO and CeO in the ternary composite sample.

View Article and Find Full Text PDF

Polymorphic two-dimensional (2D) transition metal dichalcogenides (TMDCs) exhibit diverse properties for optoelectronic applications. Here, utilizing phase-engineered MoTe as a prototypical platform, we comprehensively explored its ultrafast and nonlinear optical properties to complete the fundamental framework of phase-dependent optical phenomena in 2D TMDCs. Starting with the phase-selective synthesis of 2H- and 1T'-MoTe with tailored thicknesses, we revealed their distinct photocarrier relaxation mechanisms using intensive power-/temperature-/thickness-dependent transient absorption spectra (TAS).

View Article and Find Full Text PDF

Investigating hazard exposures and safety dynamics among researchers in academic settings: Insights from a large-scale survey study.

J Safety Res

September 2025

Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA. Electronic address:

Introduction: Researchers, whether working in wet-labs, dry-labs, clinical settings, or field environments, encounter various hazards. However, there has been limited study on the health and safety of academic researchers. This study aimed to investigate hazardous occupational exposures and safety among researchers in academic settings at a large U.

View Article and Find Full Text PDF

Imbalanced mitochondrial homeostasis in ocular diseases: unique pathogenesis and targeted therapy.

Exp Eye Res

September 2025

School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China; Department of Ophthalmology, Qingdao Eighth People's Hospital, Qingdao, Shandong Province, 266121, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shan

Mitochondria play a crucial role in energy production and are intimately associated with ocular function. Mitochondrial dysfunction can trigger oxidative stress and inflammation, adversely affecting key ocular structures such as the lacrimal gland, lens, retina, and trabecular meshwork. This dysfunction may compromise the barrier properties of the trabecular meshwork, impeding aqueous humour outflow, elevating intraocular pressure, and resulting in optic nerve damage and primary open-angle glaucoma.

View Article and Find Full Text PDF

In the present work, DFT investigations were carried out to study the effect of doping on the structural, mechanical, and optical properties of a quaternary High Entropy Alloy (HEA), FeCoVNi, with substitution doping of Co and Ni elements by Se. The cubic phase of FeCoVNi transforms into an orthorhombic phase when Co and Ni sites are replaced with Se. The mechanical stability is retained for substitution of Co up to 37.

View Article and Find Full Text PDF