98%
921
2 minutes
20
. Neuroimaging uncovers important information about disease in the brain. Yet in Alzheimer's disease (AD), there remains a clear clinical need for reliable tools to extract diagnoses from neuroimages. Significant work has been done to develop deep learning (DL) networks using neuroimaging for AD diagnosis. However, no particular model has emerged as optimal. Due to a lack of direct comparisons and evaluations on independent data, there is no consensus on which modality is best for diagnostic models or whether longitudinal information enhances performance. The purpose of this work was (1) to develop a generalizable DL model to distinguish neuroimaging scans of AD patients from controls and (2) to evaluate the influence of imaging modality and longitudinal data on performance.. We trained a 2-class convolutional neural network (CNN) with and without a cascaded recurrent neural network (RNN). We used datasets of 772 ( = 364,= 408) 3DF-FDG PET scans and 780 ( = 280,= 500) T1-weighted volumetric-3D MR images (containing 131 and 144 patients with multiple timepoints) from the Alzheimer's Disease Neuroimaging Initiative, plus an independent set of 104 ( = 63, = 41)F-FDG PET scans (one per patient) for validation.. ROC analysis showed that PET-trained models outperformed MRI-trained, achieving maximum AUC with the CNN + RNN model of 0.93 ± 0.08, with accuracy 82.5 ± 8.9%. Adding longitudinal information offered significant improvement to performance onF-FDG PET, but not on T1-MRI. CNN model validation with an independentF-FDG PET dataset achieved AUC of 0.99. Layer-wise relevance propagation heatmaps added CNN interpretability.. The development of a high-performing tool for AD diagnosis, with the direct evaluation of key influences, reveals the advantage of usingF-FDG PET and longitudinal data over MRI and single timepoint analysis. This has significant implications for the potential of neuroimaging for future research on AD diagnosis and clinical management of suspected AD patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6560/ac8f10 | DOI Listing |
Alzheimers Res Ther
September 2025
Department of Neurology, Saarland University, Kirrberger Straße, 66421, Homburg/Saar, Germany.
Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.
View Article and Find Full Text PDFAlzheimers Dement
September 2025
Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA.
Introduction: Mild cognitive impairment (MCI) represents a transitional stage between normal aging and dementia. We investigate associations among cardiovascular and metabolic disorders (hypertension, diabetes mellitus, and hyperlipidemia) and diagnosis (normal; amnestic [aMCI]; and non-amnestic [naMCI]).
Methods: Multinomial logistic regressions of participant data (N = 8737; age = 70.
Nat Aging
September 2025
Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway.
Beyond their classical functions as redox cofactors, recent fundamental and clinical research has expanded our understanding of the diverse roles of nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) in signaling pathways, epigenetic regulation and energy homeostasis. Moreover, NAD and NADP influence numerous diseases as well as the processes of aging, and are emerging as targets for clinical intervention. Here, we summarize safety, bioavailability and efficacy data from NAD-related clinical trials, focusing on aging and neurodegenerative diseases.
View Article and Find Full Text PDFGeroscience
September 2025
Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
The aging population worldwide faces an increasing burden of age-related conditions, with Alzheimer's disease being a prominent neurodegenerative concern. Drug repurposing, the practice of identifying new therapeutic applications for existing drugs, offers a promising avenue for accelerated intervention. In this study, we utilized the yeast Saccharomyces cerevisiae to screen a library of 1760 FDA-approved compounds, both with and without rapamycin, to assess potential synergistic effects on yeast growth.
View Article and Find Full Text PDFExp Neurobiol
August 2025
Department of Biological Sciences, Konkuk University, Seoul 05029, Korea.
This study investigated the learning strategy preferences of 11-month-old APP/PS1 double transgenic (Tg) mice, a well-established murine model of Alzheimer's disease (AD). APP/PS1 Tg and non-Tg control mice were serially trained in visual and hidden platform tasks in the Morris water maze. APP/PS1 Tg mice performed poorly in visual platform training compared with non-Tg mice but performed as well as non-Tg mice in hidden platform training.
View Article and Find Full Text PDF