98%
921
2 minutes
20
Background: Idiopathic Parkinson's disease (iPD) is associated with two distinct brain networks, PD-related pattern (PDRP) and PD-related cognitive pattern (PDCP), which correlate respectively with motor and cognitive symptoms. The relationship between the two networks in individual patients is unclear.
Objective: To determine whether a consistent relationship exists between these networks, we measured the difference between PDRP and PDCP expression, termed delta, on an individual basis in independent populations of patients with iPD (n = 356), patients with idiopathic REM sleep behavioral disorder (iRBD) (n = 21), patients with genotypic PD (gPD) carrying GBA1 variants (n = 12) or the LRRK2-G2019S mutation (n = 14), patients with atypical parkinsonian syndromes (n = 238), and healthy control subjects (n = 95) from the United States, Slovenia, India, and South Korea.
Methods: We used [ F]-fluorodeoxyglucose positron emission tomography and resting-state fMRI to quantify delta and to compare the measure across samples; changes in delta over time were likewise assessed in longitudinal patient samples. Lastly, we evaluated delta in prodromal individuals with iRBD and subjects with gPD.
Results: Delta was abnormally elevated in each of the four iPD samples (P < 0.05), as well as in the at-risk iRBD group (P < 0.05), with increasing values over time (P < 0.001). PDRP predominance was also present in gPD, with higher values in patients with GBA1 variants compared with the less aggressive LRRK2-G2019S mutation (P = 0.005). This trend was not observed in patients with atypical parkinsonian syndromes, who were accurately discriminated from iPD based on PDRP expression and delta (area under the curve = 0.85; P < 0.0001).
Conclusions: PDRP predominance, quantified by delta, assays the spread of dysfunction from motor to cognitive networks in patients with PD. Delta may therefore aid in differential diagnosis and in tracking disease progression in individual patients. © 2022 International Parkinson and Movement Disorder Society.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9669200 | PMC |
http://dx.doi.org/10.1002/mds.29188 | DOI Listing |
Alzheimers Res Ther
September 2025
Motor Control and Learning Group, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Leopold-Ruzicka-Weg 4, Zurich, 8093, Switzerland.
Accid Anal Prev
September 2025
Industrial and Manufacturing Systems Engineering Department, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, 48128, MI, USA; University of Michigan Transportation Research Institute, 2901 Baxter Rd, Ann Arbor, 48109, MI, USA. Electronic address:
Pedestrian injuries remain a public health concern, with child pedestrians being particularly vulnerable due to their unique physical and cognitive characteristics. This study presents a comprehensive analysis comparing injury severity patterns between child (≤14 years) and non-child (>14 years) pedestrians using Lasso logistic regression and advanced machine learning techniques, specifically Catboost with SHAP (SHapley Additive exPlanations) values to interpret the models. By analyzing six years of national crash data from the Crash Report Sampling System (CRSS) from 2016 to 2021, we identify significant factors influencing injury outcomes for both age groups.
View Article and Find Full Text PDFJ Physiol
September 2025
Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, USA.
Cognitive decline and physical impairment are often linked with ageing, contributing to declines in health span and loss of independence in older adults. Pathological cognitive decline with age is largely considered to be a brain-centric challenge. However, recent findings have begun to challenge this paradigm as the health of peripheral systems, namely skeletal muscle, predict cognitive decline associated with Alzheimer's disease (AD).
View Article and Find Full Text PDFCell Rep
September 2025
Department of Biology, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA; Biology of Adversity Project, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Elect
The neural control of breathing is both dynamic and essential, ensuring life-sustaining gas exchange while protecting the respiratory system from harm. Peripheral neurons innervating the respiratory tract exhibit remarkable diversity, continuously relaying sensory feedback to the brain to regulate breathing, trigger protective reflexes such as coughing and sickness behaviors, and even influence emotional states. Understanding this airway-brain axis is especially critical given the increasing global burden of respiratory diseases, as it holds implications for both human health and broader brain-body interactions.
View Article and Find Full Text PDFAmyotroph Lateral Scler Frontotemporal Degener
September 2025
Faculdade de Medicina, Centro de Estudos Egas Moniz, Universidade de Lisboa, Lisboa, Portugal.
This study aimed to derive standardized regression-based (SRB) reliable change indices (RCIs) for the cognitive section of the Portuguese Edinburgh Cognitive and Behavioral ALS Screen (ECAS-C). Forty-nine MND patients undergoing the ECAS were followed-up (T1) at 7.2 ± 2 months (range = 5-12).
View Article and Find Full Text PDF