SILAC-based quantitative proteomics to investigate the eicosanoid associated inflammatory response in activated macrophages.

J Inflamm (Lond)

Division of Biomedical Sciences, University of the Highlands and Islands, Centre for Health Science, Old Perth Road, Inverness, IV2 3JH, UK.

Published: September 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Macrophages play a central role in inflammation by phagocytosing invading pathogens, apoptotic cells and debris, as well as mediating repair of tissues damaged by trauma. In order to do this, these dynamic cells generate a variety of inflammatory mediators including eicosanoids such as prostaglandins, leukotrienes and hydroxyeicosatraenoic acids (HETEs) that are formed through the cyclooxygenase, lipoxygenase and cytochrome P450 pathways. The ability to examine the effects of eicosanoid production at the protein level is therefore critical to understanding the mechanisms associated with macrophage activation.

Results: This study presents a stable isotope labelling with amino acids in cell culture (SILAC) -based proteomics strategy to quantify the changes in macrophage protein abundance following inflammatory stimulation with Kdo2-lipid A and ATP, with a focus on eicosanoid metabolism and regulation. Detailed gene ontology analysis, at the protein level, revealed several key pathways with a decrease in expression in response to macrophage activation, which included a promotion of macrophage polarisation and dynamic changes to energy requirements, transcription and translation. These findings suggest that, whilst there is evidence for the induction of a pro-inflammatory response in the form of prostaglandin secretion, there is also metabolic reprogramming along with a change in cell polarisation towards a reduced pro-inflammatory phenotype.

Conclusions: Advanced quantitative proteomics in conjunction with functional pathway network analysis is a useful tool to investigate the molecular pathways involved in inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9438320PMC
http://dx.doi.org/10.1186/s12950-022-00309-8DOI Listing

Publication Analysis

Top Keywords

quantitative proteomics
8
protein level
8
silac-based quantitative
4
proteomics investigate
4
investigate eicosanoid
4
eicosanoid associated
4
associated inflammatory
4
inflammatory response
4
response activated
4
activated macrophages
4

Similar Publications

Purpose: Hormonal contraceptives are linked to a higher prevalence of depressive symptoms. Given their popularity in Western countries, understanding the biochemical effects on neuronal cells is crucial to minimizing mental health risks.

Experimental Design: Neural progenitor cells were treated with ethinyl estradiol (EE) and levonorgestrel (LNG), two synthetic sex hormones commonly used in oral contraception, and S-23, a selective androgen receptor modulator developed as a potential synthetic sex hormone for male hormonal contraception.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Curcuma wenyujin was first recorded in the Tang Dynasty's Xinxiu Bencao and has been traditionally used to treat blood stasis syndrome. Its active component curdione exhibits antiplatelet effects, though its anticoagulant mechanisms remain unclear and require further investigation.

Aim Of The Study: To investigate the anticoagulant activity of curdione, identify potential targets through integrated screening, and elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Background: The proteome is a valuable resource for pinpointing therapeutic targets. Therefore, we conducted a proteome-wide Mendelian randomization (MR) study aimed at identifying potential protein markers and therapeutic targets for Anti-N-Methyl-D-Aspartate Receptor Encephalitis (NMDAR-E).

Methods: Protein quantitative trait loci (pQTLs) were obtained from seven published genome-wide association studies (GWASs) focusing on the plasma proteome, resulting in summary-level data for 734 circulating protein markers.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) or their sub types, such as exosomes are valuable nano-biomolecules for immunotherapeutic, drug delivery, and diagnostic purposes. Freshwater and marine fish, including olive flounder (Paralichthys olivaceus), are highly susceptible to the contagious Viral hemorrhagic septicemia virus (VHSV). In this study, we aimed to determine how infection alters the biological responses by analyzing the proteomic profiles of plasma-derived exosomes from phosphate buffered saline (PBS) injected (PBS-Exo) and VHSV challenged (VHSV-Exo) olive flounders at the initial stages infection.

View Article and Find Full Text PDF

Multi-modal image analysis for large-scale cancer tissue studies within IMMUcan.

Cell Rep Methods

September 2025

Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland; Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland. Electronic address:

In cancer research, multiplexed imaging allows detailed characterization of the tumor microenvironment (TME) and its link to patient prognosis. The integrated immunoprofiling of large adaptive cancer patient cohorts (IMMUcan) consortium collects multi-modal imaging data from thousands of patients with cancer to perform broad molecular and cellular spatial profiling. Here, we describe and compare two workflows for multiplexed immunofluorescence (mIF) and imaging mass cytometry (IMC) developed within IMMUcan to enable the generation of standardized data for cancer tissue analysis.

View Article and Find Full Text PDF