98%
921
2 minutes
20
Programmable transcriptional factors based on the CRISPR architecture are becoming commonly used in plants for endogenous gene regulation. In plants, a potent CRISPR tool for gene induction is the so-called dCasEV2.1 activation system, which has shown remarkable genome-wide specificity combined with a strong activation capacity. To explore the ability of dCasEV2.1 to act as a transactivator for orthogonal synthetic promoters, a collection of DNA parts was created (GB_SynP) for combinatorial synthetic promoter building. The collection includes (i) minimal promoter parts with the TATA box and 5'UTR regions, (ii) proximal parts containing single or multiple copies of the target sequence for the gRNA, thus functioning as regulatory cis boxes, and (iii) sequence-randomized distal parts that ensure the adequate length of the resulting promoter. A total of 35 promoters were assembled using the GB_SynP collection, showing in all cases minimal background and predictable activation levels depending on the proximal parts used. GB_SynP was also employed in a combinatorial expression analysis of an autoluminescence pathway in , showing the value of this tool in extracting important biological information such as the determination of the limiting steps in an enzymatic pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9486966 | PMC |
http://dx.doi.org/10.1021/acssynbio.2c00238 | DOI Listing |
ACS Synth Biol
September 2025
ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD 4000, Australia.
Fluorescent proteins (FPs) are commonly used as reporters to examine intracellular genetic, molecular, and biochemical status. Flow cytometry is a powerful technique for accurate quantification of single-cell fluorescent levels. Here, we characterize green, red, and blue FPs for use in yeast .
View Article and Find Full Text PDFMol Ther Methods Clin Dev
June 2025
Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France.
Pompe disease is a glycogen storage disorder caused by mutations in the acid α-glucosidase (GAA) gene, leading to reduced GAA activity and glycogen accumulation in heart and skeletal muscles. Enzyme replacement therapy with recombinant GAA, the standard of care for Pompe disease, is limited by poor skeletal muscle distribution and immune responses after repeated administrations. The expression of GAA in muscle with adeno-associated virus (AAV) vectors has shown limitations, mainly the low targeting efficiency and immune responses to the transgene.
View Article and Find Full Text PDFBiomed Pharmacother
September 2025
Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.
Liver fibrosis, which eventually leads to cirrhosis, is characterized by excessive accumulation of type I collagen (COL1A), mainly derived from activated hepatic stellate cells (HSCs). Currently, there is no clinical treatments that can directly address this condition. The objectives of this study were to identify a compound that can suppress HSC activation and elucidate the molecular mechanism underlying its action.
View Article and Find Full Text PDFJ Neurosci Methods
September 2025
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia. Electronic address:
Background: Most researchers rely on popular promoters like the synthetic CAG promoter or human synapsin promoter to transduce various brain neurons. However, their effectiveness in transducing forebrain cholinergic neurons remains unclear.
New Method: We compared efficacy of transduction of cholinergic neurons and parvalbumin-positive neurons in the medial septal area of rats and mice by adeno-associated viruses (AAVs) carrying the green fluorescent protein (GFP) marker gene under three distinct promoters-CAG, synapsin, and the mouse choline acetyltransferase (CHAT) promoter.
Biotechnol Lett
September 2025
National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
Vitreoscilla hemoglobin (VHb), a homodimeric bacterial hemoglobin, exhibits distinct oxygen-binding properties that enhance cellular respiration and metabolic activity, particularly under hypoxic conditions. This review presents an updated and comprehensive synthesis of VHb-related research, encompassing its molecular structure, redox biochemistry, and transcriptional regulation. Compared with previous reviews, this work integrates recent mechanistic insights-especially those concerning transcription factor interactions, redox-coupled electron transfer, and structural-function relationships elucidated via targeted mutagenesis.
View Article and Find Full Text PDF