Programmable RNA base editing with a single gRNA-free enzyme.

Nucleic Acids Res

Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.

Published: September 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Programmable RNA editing enables rewriting gene expression without changing genome sequences. Current tools for specific RNA editing dependent on the assembly of guide RNA into an RNA/protein complex, causing delivery barrier and low editing efficiency. We report a new gRNA-free system, RNA editing with individual RNA-binding enzyme (REWIRE), to perform precise base editing with a single engineered protein. This artificial enzyme contains a human-originated programmable PUF domain to specifically recognize RNAs and different deaminase domains to achieve efficient A-to-I or C-to-U editing, which achieved 60-80% editing rate in human cells, with a few non-specific editing sites in the targeted region and a low level off-target effect globally. The RNA-binding domain in REWIREs was further optimized to improve editing efficiency and minimize off-target effects. We applied the REWIREs to correct disease-associated mutations and achieve both types of base editing in mice. As a single-component system originated from human proteins, REWIRE presents a precise and efficient RNA editing platform with broad applicability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9458445PMC
http://dx.doi.org/10.1093/nar/gkac713DOI Listing

Publication Analysis

Top Keywords

rna editing
16
editing
12
base editing
12
programmable rna
8
editing single
8
editing efficiency
8
rna
5
rna base
4
single grna-free
4
grna-free enzyme
4

Similar Publications

Huntington's disease (HD) is a progressive, autosomal dominant neurodegenerative disorder characterized by motor dysfunction, cognitive decline, and psychiatric disturbances. It is caused by CAG repeat expansions in the HTT gene, resulting in the formation of mutant huntingtin protein that aggregates and disrupts neuronal function. This review outlines the pathogenesis of HD, including genetic, molecular, and environmental factors.

View Article and Find Full Text PDF

Gene expression is modulated jointly by transcriptional regulation and messenger RNA stability, yet the latter is often overlooked in studies on genetic variants. Here, leveraging metabolic labeling data (Bru/BruChase-seq) and a new computational pipeline, RNAtracker, we categorize genes as allele-specific RNA stability (asRS) or allele-specific RNA transcription events. We identify more than 5,000 asRS variants among 665 genes across a panel of 11 human cell lines.

View Article and Find Full Text PDF

Heart failure (HF) management is advancing in the field of cardiology, driven by the increasing availability of progressive medications. Emerging pharmacological therapies in heart failure management include SGLT-2 inhibitors, ARNI, Vericiguat, and Omecamtiv. Other novel therapies that are changing the scope of HF management include IV Iron therapy and new antifibrotic agents, such as pirfenidone and pamrevlumab.

View Article and Find Full Text PDF

Characterization of mitogenome revealed a remarkable evolution in genome size and composition of protein-coding genes.

Front Plant Sci

August 2025

Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China.

Red root disease in rubber trees, caused by , is a prevalent and severe soil-borne disease in rubber tree cultivation areas. The pathogen exhibits complex infections, with multiple transmission pathways, making the disease highly concealed and difficult to diagnose in its early stages. As a result, prevention and control are challenging, posing a serious threat to rubber production.

View Article and Find Full Text PDF

The ability of an organism to identify self and foreign RNA is central to eliciting an immune response in times of need while avoiding autoimmunity. As viral pathogens typically employ double-stranded RNA (dsRNA), host identification, modulation, and response to dsRNA is key. However, dsRNA is also abundant in host transcriptomes, raising the question of how these molecules can be differentiated.

View Article and Find Full Text PDF