Recent advances on the mechanical behavior of zinc based biodegradable metals focusing on the strain softening phenomenon.

Acta Biomater

School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450003, China; School of Materials Science and Engineering, Peking University, No. 5 Yi-He-Yuan Road, Hai-Dian District, Beijing 100871, China. Electronic address:

Published: October 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Zinc based biodegradable metals (BMs) show great potential to be used in various biomedical applications, owing to their superior biodegradability and biocompatibility. Some high-strength (ultimate tensile strength > 600 MPa) Zn based BMs have already been developed through alloying and plastic working, making their use in load-bearing environments becomes a reality. However, different from Mg and Fe based BMs, Zn based BMs exhibit significant "strain-softening" effect that leads to limited uniform deformation. Non-uniform deformation is detrimental to Zn based devices or implants, which will possibly lead to unexpected failure. People might be misled by the considerable fracture elongation of Zn based BMs. Thus, it is important to specify uniform elongation as a term of mechanical requirements for Zn based BMs. In this review, recent advances on the mechanical properties of Zn based BMs have been comprehensively summarized, especially focusing on the strain softening phenomenon. At first, the origin and evaluation criteria of strain softening were introduced. Secondly, the effects of alloying elements (including element type, single or multiple addition, and alloying content) and microstructural characteristics (grain size, constituent phase, phase distribution, etc.) on mechanical properties (especially for uniform elongation) of Zn based BMs were summarized. Finally, how to get a good balance between strength and uniform elongation was generally discussed based on the service environment. In addition, possible ways to minimize or eliminate the strain softening effect were also proposed, such as controlling of twins, solute clusters, and grain boundary characteristics. All these items above would be helpful to understand the mechanical instability of Zn based BMs, and to make the full usage of them in the future medical device design. STATEMENT OF SIGNIFICANCE: Biodegradable metals (BMs) is a hotspot in the field of metallic biomaterials. Fracture elongation is normally adopted to quantify the deformability of Mg and Fe based BMs owing to their negligible necking strain, yet the strain softening would occur in Zn based BMs, which is extremely detrimental to performance of their medical device. In this review paper, a better understanding the mechanical performance of Zn-based BMs with the term "uniform elongation" instead of "fracture elongation" was depicted, and possible ways to minimize or eliminate the strain softening effect were also proposed, such as twins, solute clusters, self-stable dislocation network, and grain boundary characteristics. It would be helpful to understand the mechanical instability of Zn based BMs and making full usage of it in the future medical device design.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2022.08.041DOI Listing

Publication Analysis

Top Keywords

based bms
44
strain softening
24
based
15
bms
14
biodegradable metals
12
uniform elongation
12
medical device
12
advances mechanical
8
zinc based
8
based biodegradable
8

Similar Publications

Background: BCMA-directed chimeric antigen receptor (CAR)-T cell therapy represents a major therapeutic breakthrough for relapsed/refractory multiple myeloma (RRMM), offering deep and durable responses in heavily pretreated patients. However, a subset of patients experience early relapse or fail to respond, highlighting the need for strategies to enhance efficacy. Gamma-secretase inhibitors (GSIs) have been shown to increase surface BCMA expression on malignant plasma cells and may potentiate the activity of BCMA CAR-T cells, particularly in patients with low baseline BCMA antigen density.

View Article and Find Full Text PDF

The multi-kingdom cancer microbiome.

Nat Microbiol

September 2025

Joan and Sanford I. Weill Department of Medicine, Gastroenterology and Hepatology Division, Weill Cornell Medicine, New York, NY, USA.

Microbial influence on cancer development and therapeutic response is a growing area of cancer research. Although it is known that microorganisms can colonize certain tissues and contribute to tumour initiation, the use of deep sequencing technologies and computational pipelines has led to reports of multi-kingdom microbial communities in a growing list of cancer types. This has prompted discussions on the role and scope of microbial presence in cancer, while raising the possibility of microbiome-based diagnostic, prognostic and therapeutic tools.

View Article and Find Full Text PDF

Background: Docetaxel is the most common chemotherapy regimen for several neoplasms, including advanced OSCC (Oral Squamous Cell Carcinoma). Unfortunately, chemoresistance leads to relapse and adverse disease outcomes.

Methods: We performed CRISPR-based kinome screening to identify potential players of Docetaxel resistance.

View Article and Find Full Text PDF

Indications for haematopoietic cell transplantation and CAR-T for haematological diseases, solid tumours and immune disorders: 2025 EBMT practice recommendations.

Bone Marrow Transplant

September 2025

Clinical Hematology Department, Institut Català d'Oncologia-Hospitalet, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), University of Barcelona, Barcelona, Spain.

For over two decades, the EBMT has updated recommendations on indications for haematopoietic cell transplantation (HCT) practice based on clinical and scientific developments in the field. This is the ninth special EBMT report on indications for HCT for haematological diseases, solid tumours and immune disorders. Our aim is to provide guidance on HCT indications according to prevailing clinical practice in EBMT countries and centres.

View Article and Find Full Text PDF