Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Keloid is a poorly understood fibrotic skin disease that commonly occurs during wound-healing. As a polymer composed of nucleic acid and proteins, the structure of chromatin could be dynamically regulated in the nucleus. In this study, we explored the dynamics of chromatin accessibility and the transcriptome in dermal fibroblasts (DFs) in keloid formation. Compared to normal samples, chromatin accessibility and transcriptome were extensively altered in keloid DFs. In addition, changes in chromatin accessibility were closely associated with changes in gene expression in DFs. Breast cancer type 1 (BRCA1) was significantly downregulated in keloid DFs, and its knockdown promoted the proliferation and attenuated the migration ability of normal DF cells. Mechanistically, BRCA1 suppression significantly reduced the expression of neuronal pentraxin 2 (NPTX2), a cell viability-related gene. BRCA1 binding affinity at the NPTX2 enhancer and the chromatin accessibility in the same region were significantly lower in keloid DFs than in normal DFs, which might contribute to NPTX2 inhibition. In conclusion, this study identified BRCA1 inhibition in DFs as a novel pathological factor in keloids and preliminarily explored its potential mechanisms, which will help us understand the formation of keloids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9413150PMC
http://dx.doi.org/10.3390/polym14163391DOI Listing

Publication Analysis

Top Keywords

chromatin accessibility
20
keloid dfs
12
identified brca1
8
pathological factor
8
accessibility transcriptome
8
dfs
7
chromatin
6
keloid
6
accessibility
5
brca1
5

Similar Publications

Aims: Although the ability of the heart to adapt to environmental stress has been studied extensively, the molecular and cellular mechanisms responsible for cardioprotection are not yet fully understood. In this study, we sought to elucidate these mechanisms for cytoprotection using a model of stress-induced cardiomyopathy.

Methods And Results: We administered Toll-like receptor (TLR) agonists or diluent to wild-type mice and assessed for cardioprotection against injury from a high intraperitoneal dose of isoproterenol (ISO) administered 7 days later.

View Article and Find Full Text PDF

Chromatin dynamics play a crucial role in cellular differentiation, yet tools for studying global chromatin mobility in living cells remain limited. Here, a novel probe is developeded for the metabolic labeling of chromatin and tracking its mobility during neural differentiation. The labeling system utilizes a newly developed silicon rhodamine-conjugated deoxycytidine triphosphate (dCTP).

View Article and Find Full Text PDF

Chromatin remodeling and transcriptional reprogramming play critical roles during mammalian meiotic prophase I; however, the precise mechanisms regulating these processes remain poorly understood. Our previous work demonstrated that deletion of heat shock factor 5 (HSF5), a member of the heat shock factor family, induces meiotic arrest and male infertility. However, the molecular pathways through which HSF5 governs meiotic progression have not yet been fully elucidated.

View Article and Find Full Text PDF

Adverse intrauterine environments, such as hyperglycemia, impair sexual reproduction and species continuity, yet the underlying mechanisms remain poorly understood. In this study, we demonstrated that intrauterine hyperglycemia significantly disrupted primordial germ cell (PGC) development, especially in female offspring, thus reducing fertility. Using Oct4-EGFP transgenic mice with intrauterine hyperglycemia exposure, we revealed that hyperglycemia compromised sexually specific chromatin accessibility and DNA methylation reprogramming during PGC development.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) with rearrangement of the mixed lineage leukemia gene express MLL-AF9 fusion protein, a transcription factor that impairs differentiation and drives expansion of leukemic cells. We report here that the zinc finger protein GFI1 together with the histone methyltransferase LSD1 occupies the promoter and regulates expression of the lncRNA ELDR in the MLL-r AML cell line THP-1. Forced ELDR overexpression enhanced the growth inhibition of an LSD1i/ATRA combination treatment and reduced the capacity of these cells to generate leukemia in xenografts, leading to a longer leukemia-free survival.

View Article and Find Full Text PDF