A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Research on Clamping Action Control Technology for Floating Fixtures. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

By adaptively releasing deformation during machining, floating clamping significantly raises the machining quality of aircraft structural parts. The fundamental issue to be resolved is how to precisely control the clamping action of the floating fixtures. In this study, the machining process of aircraft beams was studied, utilizing the finite element method (FEM) from the perspective of strain energy evolution. The study found that the increment of deformation and the variation of the strain energy between adjacent removed layers of the material showed the same trend of change, and targeted clamping loosening at the stage of an excessive strain energy evolution gradient is beneficial to reducing the final deformation of the workpiece. Therefore, a clamping action control method based on strain energy evolution gradient regulation is proposed, and a clamping action control strategy of floating fixtures was formulated. Furthermore, a cutting experiment was carried out, and the results showed that the maximum deformation of the aircraft beam using the clamping action control strategy was only 0.112 mm, which was reduced by 74.6% compared to traditional clamping.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9413445PMC
http://dx.doi.org/10.3390/ma15165571DOI Listing

Publication Analysis

Top Keywords

clamping action
20
action control
16
strain energy
16
floating fixtures
12
energy evolution
12
clamping
8
evolution gradient
8
control strategy
8
control
5
control technology
4

Similar Publications