98%
921
2 minutes
20
The melting and solidification process of S32101 duplex stainless steel (DSS) was investigated using high-temperature confocal microscopy (HTCM). The method of concentric HTCM was employed to study microstructure evolution during the solidification process of S32101 DSS. This method could artificially create a meniscus-shaped solid-liquid interface, which dramatically improved the quality of in situ observations. During the heating stage, γ-austenite transformed to δ-ferrite, and this transformation manifested itself in the form of grain boundaries (GBs) moving. The effects of cooling rate on the solidification pattern and microstructure were revealed in the present research. An enhanced cooling rate led to a finer microstructure, and the solidification pattern changed from cellular to dendritic growth. As the temperature decreased, the commencement and growth of precipitates were observed. In this paper, the experimental data, including parameters such as temperature, cooling rate, and growth mode, were used as the benchmark for the simulation. A simulation framework using Micress linked to a 1D heat transfer model enabling consistent analysis of solidification dynamics in DSS across the whole cast slab was established. Simulating the dendrite growth and elemental segregation of DSS at specific cooling rates shows that this framework can be a powerful tool for solving practical production problems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9410444 | PMC |
http://dx.doi.org/10.3390/ma15165517 | DOI Listing |
J Chem Phys
September 2025
Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada.
Semiconductor quantum dots (QDs) are well known to give rise to a quantum confined structure of excitons. Because of this quantum confinement, new physics of hot exciton relaxation dynamics arises. Decades of work using transient absorption (TA) spectroscopy have yielded initial simple observations, such as estimates of the cooling rate from single pump photon energy experiments.
View Article and Find Full Text PDFFood Res Int
November 2025
Key Laboratory of Intelligent Food Logistic and Processing of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China. Electronic address:
Crab encounters obstacles like elevated transportation expense and diminished survival rate. In the study, the effects of cold anesthesia (CA), including fast cooling (FC) and slow cooling (SC) anesthesia on the vitality state and muscle quality of Chinese mitten crab were researched. We found firstly that the CA dormancy temperature range of Chinese mitten crab was identified from -2 to 10 °C, and 7 °C was optimal.
View Article and Find Full Text PDFJ Thermoplast Compos Mater
August 2025
Institute for Applied Materials - Microstructure Modeling and Simulation, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
In this paper, we introduce a coarse-grained model of polymer crystallization using a multiphase-field approach. The model combines a multiphase-field method, Nakamura's kinetic equation, and the equation of heat conduction for studying microstructural evolution of crystallization under isothermal and non-isothermal conditions. The multiphase-field method provides flexibility in adding any number of phases with different properties making the model effective in studying blends or composite materials.
View Article and Find Full Text PDFACS Omega
September 2025
State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology, Xuzhou, Jiangsu 221116, People's Republic of China.
This study focuses on the issues of poor fluidity, low penetration into residual coal, and suboptimal inhibition of coal spontaneous combustion associated with traditional coal mine gel fire retardants. The permeability and flow characteristics of a sodium alginate-based composite thermosensitive hydrogel, as well as its fire prevention and extinguishment performance, were investigated. The findings suggest that the thermosensitive hydrogel behaves as a pseudoplastic fluid at 40 °C and a yield-pseudoplastic fluid at 65 °C, exhibiting shear-thinning behavior with increasing shear rate.
View Article and Find Full Text PDFJ Food Sci Technol
October 2025
Department of mechanical engineering, Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, 300134 China.
To minimize the liquid splashing in vacuum cooling, the mass and temperature changes of liquid food were measured by changing the conditions such as the volume ratio of the solution to the container, the pore area, the initial temperature and the terminal temperature, and the effects of different conditions on the ineffective water loss rate were derived from the test results. When the opening area is 1.13cm, the ineffective water loss rate is the largest.
View Article and Find Full Text PDF