98%
921
2 minutes
20
Unlabelled: Microscaled proteogenomics was deployed to probe the molecular basis for differential response to neoadjuvant carboplatin and docetaxel combination chemotherapy for triple-negative breast cancer (TNBC). Proteomic analyses of pretreatment patient biopsies uniquely revealed metabolic pathways, including oxidative phosphorylation, adipogenesis, and fatty acid metabolism, that were associated with resistance. Both proteomics and transcriptomics revealed that sensitivity was marked by elevation of DNA repair, E2F targets, G2-M checkpoint, interferon-gamma signaling, and immune-checkpoint components. Proteogenomic analyses of somatic copy-number aberrations identified a resistance-associated 19q13.31-33 deletion where LIG1, POLD1, and XRCC1 are located. In orthogonal datasets, LIG1 (DNA ligase I) gene deletion and/or low mRNA expression levels were associated with lack of pathologic complete response, higher chromosomal instability index (CIN), and poor prognosis in TNBC, as well as carboplatin-selective resistance in TNBC preclinical models. Hemizygous loss of LIG1 was also associated with higher CIN and poor prognosis in other cancer types, demonstrating broader clinical implications.
Significance: Proteogenomic analysis of triple-negative breast tumors revealed a complex landscape of chemotherapy response associations, including a 19q13.31-33 somatic deletion encoding genes serving lagging-strand DNA synthesis (LIG1, POLD1, and XRCC1), that correlate with lack of pathologic response, carboplatin-selective resistance, and, in pan-cancer studies, poor prognosis and CIN. This article is highlighted in the In This Issue feature, p. 2483.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9627136 | PMC |
http://dx.doi.org/10.1158/2159-8290.CD-22-0200 | DOI Listing |
J Ultrasound Med
September 2025
Department of Ultrasound, Donghai Hospital Affiliated to Kangda College of Nanjing Medical University, Lianyungang, China.
Objective: The aim of this study is to evaluate the prognostic performance of a nomogram integrating clinical parameters with deep learning radiomics (DLRN) features derived from ultrasound and multi-sequence magnetic resonance imaging (MRI) for predicting survival, recurrence, and metastasis in patients diagnosed with triple-negative breast cancer (TNBC) undergoing neoadjuvant chemotherapy (NAC).
Methods: This retrospective, multicenter study included 103 patients with histopathologically confirmed TNBC across four institutions. The training group comprised 72 cases from the First People's Hospital of Lianyungang, while the validation group included 31 cases from three external centers.
Biomacromolecules
September 2025
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
Triple-negative breast cancer (TNBC) remains a formidable clinical challenge due to its aggressive behavior, lack of therapeutic targets, and poor prognosis. The PI3K/AKT/mTOR pathway is highly activated in TNBC, making it a promising therapeutic target. Conventional PEGylated nanocarriers often face challenges, such as accelerated blood clearance and lysosomal trapping.
View Article and Find Full Text PDFClin Case Rep
September 2025
Department of Thoracic Surgery, Fu Xing Hospital, the Eighth Clinical Medical College Capital Medical University Beijing China.
Lactation-associated breast cancer poses diagnostic challenges due to physiological breast changes that may mask malignancies. Triple-negative breast cancer (TNBC) during lactation is rare and aggressive, requiring vigilant evaluation and treatment. This report highlights the diagnostic dilemma of recurrent cystic breast lesions during lactation, which can mimic benign conditions like galactoceles but may conceal aggressive TNBC, leading to potential delays in diagnosis despite initial conservative approaches such as aspiration.
View Article and Find Full Text PDFRep Pract Oncol Radiother
August 2025
Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
Background: Triple-negative breast cancer (TNBC) shows a high aggressiveness and chemoresistance. It is important to understand the biology of TNBC, including the influence of immune cells, such as macrophages, on cancer cells (CCs) and their response to chemotherapeutics. The research aimed to determine the effect of cisplatin (CisPt) and paclitaxel (PTX) on the viability, migratory ability and expression of selected genes of TNBC cells co-cultured with macrophages.
View Article and Find Full Text PDFFront Oncol
August 2025
General Hospital of Ningxia Medical University, Yinchuan, China.
Background: Breast cancer (BRCA) is the most prevalent cancer in women, with triple-negative breast cancer (TNBC) accounting for 15-20% of cases. TNBC is associated with higher rates of metastasis, recurrence, and poorer prognosis, underscoring the urgent need for new diagnostic and therapeutic strategies.
Methods: In this study, multiple public online platform, including UCSC Genome, UALCAN, Kaplan Meier plotter, DepMap and Single Cell Portal were used to detect the expression of EPHA2 in TNBC.