Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The SARS-CoV-2 variant of concern (VOC) Delta was first detected in India in October 2020. The first imported cases of the Delta variant in Brazil were identified in April 2021 in the southern region, followed by more cases in different regions during the following months. By early September 2021, Delta was already the dominant variant in the southeastern (87%), southern (73%), and northeastern (52%) Brazilian regions. This study aimed to understand the spatiotemporal dissemination dynamics of Delta in Brazil. To this end, we employed a combination of maximum likelihood (ML) and Bayesian methods to reconstruct the evolutionary relationship of 2,264 VOC Delta complete genomes (482 from this study) recovered across 21 of the 27 Brazilian federal units. Our phylogeographic analyses identified three major transmission clusters of Delta in Brazil. The clade BR-I (= 1,560) arose in Rio de Janeiro in late April 2021 and was the major cluster behind the dissemination of the VOC Delta in the southeastern, northeastern, northern, and central-western regions. The AY.101 lineage (= 207) that arose in the Paraná state in late April 2021 and aggregated the largest fraction of sampled genomes from the southern region. Lastly, the AY.46.3 lineage emerged in Brazil in the São Paulo state in early June 2021 and remained mostly restricted to this state. In the rapid turnover of viral variants characteristic of the SARS-CoV-2 pandemic, Brazilian regions seem to occupy different stages of an increasing prevalence of the VOC Delta in their epidemic profiles. This process demands continuous genomic and epidemiological surveillance toward identifying and mitigating new introductions, limiting their dissemination, and preventing the establishment of more significant outbreaks in a population already heavily affected by the COVID-19 pandemic. Amid the SARS-CoV-2 continuously changing epidemic profile, this study details the space-time dynamics of the emergence of the Delta lineage across Brazilian territories, pointing out its multiple introductions in the country and its most prevalent sublineages. Some of these sublineages have their emergence, alongside their genomic composition and geographic distribution, detailed here for the first time. A special focus is given to the emergence process of Delta outside the country's south and southeast regions, the most populated and subjects of most published SARS-CoV-2 studies in Brazil. In summary, the study allows a better comprehension of the evolution process of a SARS-CoV-2 lineage that would be associated with a significant recrudescence of the pandemic in Brazil.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604183PMC
http://dx.doi.org/10.1128/spectrum.02641-21DOI Listing

Publication Analysis

Top Keywords

voc delta
16
brazilian regions
12
april 2021
12
delta
11
sars-cov-2 variant
8
variant concern
8
southern region
8
delta brazil
8
late april
8
sars-cov-2
6

Similar Publications

The conjugation of proteins to the outer membranes of liposomes is a standard procedure used in bioanalytical and drug delivery approaches. Herein, we describe the development of a liposome-based surrogate assay for the quantification of SARS-CoV-2 neutralizing antibodies. Taking into consideration differences in amino acid sequences within the receptor-binding domain (RBD) of SARS-CoV-2 Spike proteins derived from five selected variants of concern (VoC), we studied the impact of coupling chemistries on physicochemical properties and antigenicity.

View Article and Find Full Text PDF

Background: , an intracellular pathogen responsible for the pneumonia-like Legionnaires' disease in humans, inhabits aquatic environments, including man-made water systems such as water fountains, foot spas, and tap water, and exists as part of biofilms or as a protozoan parasite. As a bacterivore, provides a favorable environment for to establish a replicative niche (-containing vacuole; LCV) under environmental stress. Conversely, the Ofk308 strain, isolated from an Ashiyu foot spa, has been found to be cytotoxic to the ciliate CU427.

View Article and Find Full Text PDF

The first generation of Spike-based COVID-19 vaccines has reduced the risk of hospitalization, serious illness, and death caused by SARS-CoV-2 infections. However, waning immunity induced by these vaccines has failed to prevent immune escape, resulting in the emergence of multiple variants of concern (VOCs) and the prolongation of the COVID-19 pandemic. We hypothesize that a next-generation Coronavirus (CoV) vaccine incorporating highly conserved SARS-CoV-2 T cell antigens would confer potent, broad, and long-lasting cross-protective immunity against multiple VOCs.

View Article and Find Full Text PDF

Optoelectronic Properties of Tetracyanoquinodimethane (TCNQ) Related Compounds for Applications to OSCs and OLEDs: A Theoretical Study.

J Phys Chem A

August 2025

Department of Chemistry, Bhatter College, Dantan, P.O. Dantan, Paschim Medinipur, Dantan 721426, India.

Tetracyanoquinodimethane (TCNQ) and related compounds are thoroughly investigated as potential innovative organic semiconductors and singlet fission (SF) materials. The TDDFT method with the PBE0/Def2-TZVP level is used to determine the geometrical structures, atomic dipole corrected Hirshfeld (ADCH) charge, population, dipole moment (μ), band gaps, different density of states (DOSs), excitation energies, hole-(λ) and electron-(λ) reorganization energies, SF properties, absorption-emission spectra, transition density matrix (TDM), electron localization function (ELF) of these molecules, and open circuit voltage (), fill factor (FF), and power conversion efficiency (PCE) of possible optoelectronic devices. At the CAM-B3LYP/6-311G** level, we examine the ground and excited state characteristics of 44 modeled TCNQ-related molecules.

View Article and Find Full Text PDF

Fractional differential quadrature method for modeling composite halide perovskite solar cells.

Sci Rep

August 2025

Department of Basic science, Faculty of Engineering, Delta University for Science and Technology, Gamasa, Egypt.

This work presents a novel approach for high-efficiency modeling of composite halide perovskite solar cells using the Fractional Differential Quadrature (FDQ) method. The FDQ method is applied to solve the governing equations derived from continuity and Poisson equations describing charge transport in a specific perovskite structure (PCBM/CH3NH3GeI3/CuI) solar cell. Our simulations demonstrate high accuracy with an error margin of 10⁻⁸ compared to experimental data and significant computational efficiency compared to other experimental and numerical methods.

View Article and Find Full Text PDF