Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This work investigated the catalytic high-pressure CO pretreatment of giant reed. CO is a renewable resource; its use does not generate chemical wastes and it can be easily removed and recycled. The effect of the addition of low concentrations of FeCl (0.16 wt %) and PEG 400 (1.0 wt %) on the hemicellulose hydrolysis to xylose and xylo-oligosaccharides (XOS) is reported for the first time. Under the optimised pretreatment conditions, the xylan conversion of 82 mol % and xylose and XOS yields of 43 and 20 mol % were achieved, respectively. The solid residues obtained from different pretreatments were used as the substrate for the enzymatic hydrolysis to give glucose. The total glucose yield achieved under the optimised two-step process was 67.8 mol % with respect to the glucan units in the biomass. The results demonstrated that PEG-assisted FeCl -catalysed scCO pretreatment can produce xylose- or XOS-rich hydrolysates and improve the enzymatic hydrolysis of biomass.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cplu.202200189 | DOI Listing |