Publications by authors named "Sara Fulignati"

The potential benefits of adding wrack (i.e., litter comprised of algae and seagrasses), removed from beaches during cleaning, on coastal dunes for improving their resilience have been recently explored.

View Article and Find Full Text PDF

Seagrass wrack plays multiple ecological roles in coastal habitats but is often removed from beaches and used for economical processing, neglecting its potential role in sustaining dune plant establishment under changing climate scenarios. Rainwater shortage is a major stress for seedlings and reduced precipitations are expected in some coastal areas. We investigated in mesocosm how wrack influenced seedling performance of Cakile maritima, Thinopyrum junceum, and Calamagrostis arenaria under current and reduced precipitation.

View Article and Find Full Text PDF

Diphenolic acid, or 4,4-bis(4-hydroxyphenyl)pentanoic acid, represents one of the potentially most interesting bio-products obtainable from the levulinic acid supply-chain. It represents a valuable candidate for the replacement of bisphenol A, which is strongly questioned for its toxicological issues. Diphenolic acid synthesis involves the condensation reaction between phenol and levulinic acid and requires the presence of a Brønsted acid as a catalyst.

View Article and Find Full Text PDF

Levulinic acid production by acid-catalyzed hydrothermal conversion of (ligno)cellulosic biomass generates significant amounts of carbonaceous hydrochar, which is currently considered a final waste. In this work, the hydrochar recovered after the levulinic acid production, was subjected to cascade pyrolysis and chemical activation treatments (by HPO or KOH), to synthesize activated carbons. The pyrolysis post-treatment was already effective in improving the surface properties of the raw hydrochar (Specific Surface Area: 388 m/g, V: 0.

View Article and Find Full Text PDF

Pollution associated to marine plastic litter is raising increasing concerns due to its potential harmful effects on human health, biota, and coastal ecosystems. However, limited information is available on the degradation behavior of plastics, especially biodegradable ones, in dune habitats. Moreover, the effects of plastics on dune plant growth and ability to withstand environmental stresses and invasion by non-native plants have been largely neglected.

View Article and Find Full Text PDF

This work investigated the catalytic high-pressure CO pretreatment of giant reed. CO is a renewable resource; its use does not generate chemical wastes and it can be easily removed and recycled. The effect of the addition of low concentrations of FeCl (0.

View Article and Find Full Text PDF

The depletion of fossil resources is driving the research towards alternative renewable ones. Under this perspective, 5-hydroxymethylfurfural (HMF) represents a key molecule deriving from biomass characterized by remarkable potential as platform chemical. In this work, for the first time, the hydrogenation of HMF in ethanol was selectively addressed towards 2,5-bis(hydroxymethyl)furan (BHMF) or 2,5-bis(hydroxymethyl)tetrahydrofuran (BHMTHF) by properly tuning the reaction conditions in the presence of the same commercial catalyst (Ru/C), reaching the highest yields of 80 and 93 mol%, respectively.

View Article and Find Full Text PDF

A two-step exploitation of the giant reed cellulose to glucose and levulinic acid, after the complete removal of the hemicellulose fraction, was investigated using FeCl as catalyst. In the first step, the microwave-assisted hydrolysis of cellulose to glucose was optimised by response surface methodology analysis, considering the effect of temperature, reaction time and catalyst amount. Under the optimised reaction conditions, the glucose yield was 39.

View Article and Find Full Text PDF

For the first time, the exploitation of hazelnut shells for the combined production of levulinic acid (LA) and hydrochar was investigated. The optimization of the catalytic hydrothermal treatment was performed both in autoclave and microwave reactor, approaching a maximum LA yield of ∼9-12wt%. Hydrochars recovered with high yield (∼43-47wt%) were characterized by different techniques, including elemental and proximate analysis, heating value, FT-IR, XPS, XRD, SEM-EDX, and SAA.

View Article and Find Full Text PDF