98%
921
2 minutes
20
Epcoritamab is a CD3xCD20 bispecific antibody (bsAb) that induces T-cell-mediated cytotoxicity against CD20-positive B cells. Target engagement and crosslinking of CD3 and CD20 (trimer formation) leads to activation and expansion of T cells and killing of malignant B cells. The primary objective of the dose-escalation part of the phase I/II trial of epcoritamab was to determine the maximum tolerated dose, recommended phase II dose (RP2D), or both. For bsAbs, high target saturation can negatively affect trimer formation. The unique properties and mechanisms of action of bsAbs require novel pharmacokinetic (PK) modeling methods to predict clinical activity and inform RP2D selection. Traditional PK/pharmacodynamic (PD) modeling approaches are inappropriate because they may not adequately predict exposure-response relationships. We developed a semimechanistic, physiologically-based PK/PD model to quantitatively describe biodistribution, trimer formation, and tumor response using preclinical, clinical PK, biomarker, tumor, and response data from the dose-escalation part of the phase I/II trial. Clinical trial simulations were performed to predict trimer formation and tumor response in patients with diffuse large B-cell lymphoma (DLBCL) or follicular lymphoma (FL). Model-predicted trimer formation plateaued at doses of 48 to 96 mg. Simulation results suggest that the 48-mg dose may achieve optimal response rates in DLBCL and FL. Exposure-safety analyses showed a flat relationship between epcoritamab exposure and risk of cytokine release syndrome in the dose range evaluated. This novel PK/PD modeling approach guided selection of 48 mg as the RP2D and provides a framework that may be applied to other CD3 bsAbs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9827893 | PMC |
http://dx.doi.org/10.1002/cpt.2729 | DOI Listing |
Org Lett
September 2025
Guangdong Basic Research Center of Excellence for Aggregate Science, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
The polymerization mechanism and the identification of key oligomer intermediates during the thermal condensation of benzoguanamine (BG) remain unclear. Herein, we report a novel mixed thermal condensation strategy using BG and a pre-synthesized dimer to selectively synthesize the trimer (BG) with a significantly enhanced yield. Comprehensive characterization techniques confirm the formation of a linear molecular structure for (BG).
View Article and Find Full Text PDFJ Phys Chem B
September 2025
Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.
Light-harvesting complex IIs (LHCIIs) are the major antenna in higher plants, balancing light capture through photoprotection. While it naturally forms trimers, stress conditions can induce monomerization, altering pigment interactions. Here, we explored how molecular oxygen affects triplet excited-state dynamics in LHCII monomers using time-resolved transient absorption spectroscopy under aerobic and anaerobic conditions.
View Article and Find Full Text PDFInorg Chem
September 2025
Boston University, Chemistry Department, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States.
Previously published (NMe)[V(O)(μ-O)(pin)], has been shown to aerobically catalyze the oxidation of benzylic and allylic alcohols under mild conditions. Herein, we report syntheses of [V(O)(μ-O)(pin)] trimers, which are also active in OAD catalysis. Trimer formation requires an ammonium cation with at least two hydrogen atoms per cation (e.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan.
Kaposi's sarcoma-associated herpesvirus (KSHV) belongs to the Gammaherpesvirinae subfamily. During the lytic phase of herpesviruses, viral capsids form in the host cell nucleus, and the replicated viral genome is packaged into these capsids. The herpesviral genome is replicated as a precursor head-to-tail concatemer consisting of tandemly repeated genomic units, each flanked by terminal repeats (TRs).
View Article and Find Full Text PDFACS Nano
September 2025
Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
As a versatile platform for exploring exotic quantum phases, moiré superlattices, ranging from twisted graphene to twisted transition metal dichalcogenides, have been intensively studied. In this work, based on exact diagonalization and Hartree-Fock mean-field calculations, the interaction-driven topological phases are investigated in hole-doped twisted bilayer MoS at the high filling factor = 3. Besides the nematic insulator and quantum anomalous Hall phases, the topological Wigner molecule crystal (TWMC) phase is found in the phase diagram.
View Article and Find Full Text PDF