98%
921
2 minutes
20
A huge shortage of organ donors, particularly in the case of liver, has necessitated the development of alternative therapeutic strategies. Primary hepatocytes (pHCs) transplantation has made a considerable transition from bench to bedside, but the short-term viability and functionality of pHCs in in vitro limit their use for clinical applications. Different cell culture strategies are required to maintain the proliferation of pHCs for extended periods. Here, we described the formation of a hybrid scaffold based on a modified dipeptide for the culture of pHCs. First, the dipeptide (Dp), isoleucine-α,β-dehydrophenylalanine (IΔF) was synthesized, purified, and fully characterized. IΔF readily formed a highly stable hydrogel, which was also characterized by CD, TEM, and thioflavin T assay. The addition of soluble liver extracellular matrix (sLEM) to the dipeptide readily formed a hybrid scaffold that was characterized by TEM, and its mechanical strength was determined by rheology experiments. The hybrid scaffold was translucent, biocompatible, and proteolytically stable and, with its mechanical strength, closely mimicked that of the native liver. LEM-Dp matrix exhibited high biocompatibility in the readily available adherent liver cell line Huh7 and primary rat hepatocyte cells (pHCs). pHCs cultured on LEM-Dp matrix also maintained significantly higher cell viability and an escalated expression of markers related to the hepatocytes such as albumin as compared to that observed in cells cultured on collagen type I (Col I)-coated substrate plate (col-TCTP). -stacking of confocal laser microscopy's volume view clearly indicated pHCs seeded on top of the hydrogel matrix migrated toward the direction showing 3D growth. Our results indicated that low molecular weight dipeptide hydrogel along with sLEM can resemble biomimetic 3D-like microenvironments for improved pHCs proliferation, differentiation, and function. This hybrid scaffold is also easy to scale up, which makes it suitable for several downstream applications of hepatocytes, including drug development, pHCs transplantation, and liver regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.2c00526 | DOI Listing |
RSC Adv
September 2025
Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University Zagazig 44511 Egypt
A novel isatin-thiazole-coumarin hybrid and three isatin-hydantoin hybrids were synthesized and assessed for their α-glucosidase and anticholinesterase inhibitory activities. Moreover, their anticancer properties have been observed against the breast cancer cell lines MCF-7 and MDA-MB-231. The coumarin-containing hybrid exhibited the most potent biological activity across all assays.
View Article and Find Full Text PDFRSC Adv
September 2025
Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University P. O. 43713 New Galala Egypt
Isatin (1-indole-2,3-dione) is a privileged nitrogen-containing heterocyclic framework that has received considerable attention in anticancer drug discovery owing to its general biological behavior and structural diversity. This review focuses on isatin-heterocyclic hybrids as a valuable model in the development of new anti-cancer drugs that may reduce side effects and help overcome drug resistance, discussing their synthetic approaches and mechanism of action as apoptosis induction through kinase inhibition. With various chemical modifications, isatin had an excellent ability to build powerful isatin hybrids and conjugates targeting multiple oncogenic pathways.
View Article and Find Full Text PDFRSC Adv
September 2025
Department of Chemistry, Central University of Karnataka Kalaburagi-585 367 Karnataka India.
This research work details the use of a molecular hybridization technique to create a library of four series of hydrazineyl-linked imidazo[1,2-]pyrimidine-thiazole derivatives. The structure of one of the final products, K2, was validated using single-crystal X-ray diffraction. Twenty-six novel hybrid molecules (K1-K26) were synthesized and tested for activity against the H37Rv strain.
View Article and Find Full Text PDFChem Biol Drug Des
September 2025
School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa.
Molecular hybridization of isoniazid with hydrophobic aromatic moieties represents a promising strategy for the development of novel anti-tubercular therapeutics. In this study, a series of hybrid molecules (5a-i) was synthesized by linking isoniazid with aromatic sulfonate esters via a hydrazone bridge. Molecular docking studies revealed that these compounds interact effectively with the catalytic triad of the InhA enzyme (Y158, F149, and K165), suggesting their potential as InhA inhibitors.
View Article and Find Full Text PDFJ Chem Inf Model
September 2025
Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0041, United States.
The development of low-cost, high-performance materials with enhanced transparency in the long-wavelength infrared (LWIR) region (800-1250 cm/8-12.5 μm) is essential for advancing thermal imaging and sensing technologies. Traditional LWIR optics rely on costly inorganic materials, limiting their broader deployment.
View Article and Find Full Text PDF