98%
921
2 minutes
20
Background/purpose: To apply an automated deep learning automated fluid algorithm on data from real-world management of patients with neovascular age-related macular degeneration for quantification of intraretinal/subretinal fluid volumes in optical coherence tomography images.
Methods: Data from the Vienna Imaging Biomarker Eye Study (VIBES, 2007-2018) were analyzed. Databases were filtered for treatment-naive neovascular age-related macular degeneration with a baseline optical coherence tomography and at least one follow-up and 1,127 eyes included. Visual acuity and optical coherence tomography at baseline, Months 1 to 3/Years 1 to 5, age, sex, and treatment number were included. Artificial intelligence and certified manual grading were compared in a subanalysis of 20%. Main outcome measures were fluid volumes.
Results: Intraretinal/subretinal fluid volumes were maximum at baseline (intraretinal fluid: 21.5/76.6/107.1 nL; subretinal fluid 13.7/86/262.5 nL in the 1/3/6-mm area). Intraretinal fluid decreased to 5 nL at M1-M3 (1-mm) and increased to 11 nL (Y1) and 16 nL (Y5). Subretinal fluid decreased to a mean of 4 nL at M1-M3 (1-mm) and remained stable below 7 nL until Y5. Intraretinal fluid was the only variable that reflected VA change over time. Comparison with human expert readings confirmed an area under the curve of >0.9.
Conclusion: The Vienna Fluid Monitor can precisely quantify fluid volumes in optical coherence tomography images from clinical routine over 5 years. Automated tools will introduce precision medicine based on fluid guidance into real-world management of exudative disease, improving clinical outcomes while saving resources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/IAE.0000000000003557 | DOI Listing |
Neurol Neuroimmunol Neuroinflamm
November 2025
Departments of Neurology and Ophthalmology, NYU Grossman School of Medicine, NY; and.
Background And Objectives: While reductions in optical coherence tomography (OCT) pRNFL and ganglion cell-inner plexiform layer thicknesses have been shown to be associated with brain atrophy in adult-onset MS (AOMS) cohorts, the relationship between OCT and brain MRI measures is less established in pediatric-onset MS (POMS). Our aim was to examine the associations of OCT measures with volumetric MRI in a cohort of patients with POMS to determine whether OCT measures reflect CNS neurodegeneration in this patient population, as is seen in AOMS cohorts.
Methods: This was a cross-sectional study with retrospective ascertainment of patients with POMS evaluated at a single center with expertise in POMS and neuro-ophthalmology.
Retina
September 2025
Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, CH-3010.
Purpose: To evaluate inter-grader variability in posterior vitreous detachment (PVD) classification in patients with epiretinal membrane (ERM) and macular hole (MH) on spectral-domain optical coherence tomography (SD-OCT) and identify challenges in defining a reliable ground truth for artificial intelligence (AI)-based tools.
Methods: A total of 437 horizontal SD-OCT B-scans were retrospectively selected and independently annotated by six experienced ophthalmologists adopting four categories: 'full PVD', 'partial PVD', 'no PVD', and 'ungradable'. Inter-grader agreement was assessed using pairwise Cohen's kappa scores.
Retina
September 2025
Retina Division, Stein Eye Institute, University of California of Los Angeles, Los Angeles, California.
Purpose: To describe the clinical and multimodal imaging features of a novel form of macular neovascularization (MNV), designated Type 4 MNV, defined by mixed Type 1 and Type 2 neovascularization (NV), extensive intraretinal anastomotic NV, and central posterior hyaloid fibrosis (CPHF).
Methods: This multicenter retrospective observational case series included patients with neovascular age-related macular degeneration (AMD) exhibiting both Type 1 and 2 MNV and an overlying anastomotic intraretinal NV network. This was confirmed with OCT and OCT angiography (OCTA).
Retina
September 2025
Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.
Purpose: To evaluate the long-term functional and anatomical outcomes in patients with tractional lamellar macular holes who were managed without surgical intervention.
Methods: 63 eyes previously diagnosed with tractional lamellar macular hole between July 1, 2009 and January 30, 2024 without any surgical interventions were enrolled. The change in best-corrected visual acuity (BCVA), lamellar hole diameter, central retinal thickness (CRT) on Optical coherence tomography (OCT), foveal avascular zone (FAZ) areas on OCT angiography, and M-chart scores between initial and final visit were assessed.
Retina
September 2025
Ulucanlar Eye Training and Research Hospital, Retina Clinic of Ophthalmology Department, Ankara, Turkey.
Purpose: To compare the clinical features, multimodal imaging characteristics, and treatment outcomes of primary and secondary large retinal capillary aneurysms (LRCA).
Methods: A total of 34 eyes were included: seven with primary LRCA and 27 with secondary LRCA. All patients underwent fundus photography, optical coherence tomography (OCT), and fundus fluorescein angiography.