Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The mechanistic link between avian oxidative physiology and plumage coloration has attracted considerable attention in past decades. Hence, multiple proximal hypotheses were proposed to explain how oxidative state might covary with the production of melanin and carotenoid pigments. Some hypotheses underscore that these pigments (or their precursors, e.g., glutathione) have antioxidant capacities or function as molecules storing the toxic excess of intracellular compounds, while others highlight that these pigments can act as pro-oxidants under specific conditions. Most studies addressing these associations are at the intraspecific level, while phylogenetic comparative studies are still scarce, though needed to assess the generality of these associations. Here, we tested whether plumage and bare part coloration were related to oxidative physiology at an interspecific level by measuring five oxidative physiology markers (three nonenzymatic antioxidants and two markers of lipid peroxidative damage) in 1387 individuals of 104 European bird species sampled during the breeding season, and by scoring plumage eumelanin, pheomelanin, and carotenoid content for each sex and species. Only the plasma level of reactive oxygen metabolites was related to melanin coloration, being positively associated with eumelanin score and negatively with pheomelanin score. Thus, our results do not support the role of antioxidant glutathione in driving variation in melanin synthesis across species. Furthermore, the carotenoid scores of feathers and bare parts were unrelated to the measured oxidative physiology parameters, further suggesting that the marked differences in pigmentation across birds does not influence their oxidative state.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9366753PMC
http://dx.doi.org/10.1002/ece3.9177DOI Listing

Publication Analysis

Top Keywords

oxidative physiology
20
pigmentation birds
8
oxidative state
8
oxidative
7
physiology weakly
4
weakly associated
4
associated pigmentation
4
birds mechanistic
4
mechanistic link
4
link avian
4

Similar Publications

Metabolic Flexibility in Insects: Patterns, Mechanisms, and Implications.

Annu Rev Entomol

September 2025

2Department of Animal Physiology, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany.

The evolutionary success of insects may be partly attributed to their profound ability to adjust metabolism in response to environmental stress or resource variability at a range of timescales. Metabolic flexibility encompasses the ability of an organism to adapt or respond to conditional changes in metabolic demand and tune fuel oxidation to match fuel availability. Here, we evaluate the mechanisms of metabolic flexibility in insects that are considered short-term, medium-term, and long-term responses.

View Article and Find Full Text PDF

Sickness-induced sleep is a behavior conserved across species that promotes recovery from illness, yet the underlying mechanisms are poorly understood. Here, we show that interleukin-6-like cytokine signaling from the gut to brain glial cells regulates sleep. Under healthy conditions, this pathway promotes wakefulness.

View Article and Find Full Text PDF

Radiotherapy, a prevalent and effective treatment for various malignancies, often causes collateral damage to normal skin and soft tissues in the irradiated area. To address this, we developed a novel approach combining SVFG-modified adipose-derived high-activity matrix cell clusters (HAMCC) with concentrated growth factors (CGF) to enhance regeneration and repair of radiation-induced skin and soft tissue injuries. Our study included cellular assays, wound healing evaluations, and histological analyses.

View Article and Find Full Text PDF

In Brief: Advanced maternal age (AMA) is associated with adverse pregnancy outcomes, particularly those associated with placental dysfunction. This study showed that in a mouse model of AMA, male but not female fetuses had increased placental apoptosis and lipid peroxidation, as well as increased mitochondrial content, suggesting that the placentas of male fetuses in AMA mothers adapt to be able to deliver sufficient energy to the fetus.

Abstract: Although advanced maternal age (AMA) increases the risk of fetal growth restriction (FGR) and stillbirth, the mechanisms leading to the placental dysfunction observed in AMA are unknown.

View Article and Find Full Text PDF

American black bear (Ursus americanus) as a potential host for Campylobacter jejuni.

PLoS One

September 2025

School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, United States of America.

The Gram-negative bacterium Campylobacter jejuni is part of the commensal gut microbiota of numerous animal species and a leading cause of bacterial foodborne illness in humans. Most complete genomes of C. jejuni are from strains isolated from human clinical, poultry, and ruminant samples.

View Article and Find Full Text PDF