98%
921
2 minutes
20
Singlet oxygen is a potent oxidant with major applications in organic synthesis and medicinal treatment. An efficient way to produce singlet oxygen is the photochemical generation by fullerenes which exhibit ideal thermal and photochemical stability. In this contribution we describe readily accessible ML nanospheres with unique binding sites for fullerenes located at the windows of the nanospheres. Up to four C can be associated with a single nanosphere, presenting an efficient method for fullerene extraction and application. Depending on the functionality located on the outside of the sphere, they act as vehicles for O generation in organic or in aqueous media using white LED light. Excellent productivity in O generation and consecutive oxidation of O acceptors using C⊂[PdL], C⊂[PdL] or fullerene soot extract was observed. The methodological design principles allow preparation and application of highly effective multifullerene binding spheres.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9437924 | PMC |
http://dx.doi.org/10.1021/jacs.2c05507 | DOI Listing |
Dev Growth Differ
September 2025
Department of Biological Sciences, College of Arts, Sciences, and Education, Florida International University, Miami, Florida, USA.
Superoxide dismutases (SODs) are key regulators of reactive oxygen species (ROS) and redox balance. Although intracellular SODs have been extensively studied, growing attention has been directed toward understanding the roles of extracellular SODs in both Dictyostelium and mammalian systems. In Dictyostelium discoideum, SodC is a glycosylphosphatidylinositol (GPI)-anchored enzyme that modulates extracellular superoxide to regulate Ras, PI3K signaling, and cytoskeletal remodeling during directional cell migration.
View Article and Find Full Text PDFElife
September 2025
Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, United States.
The microglial surface protein Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) plays a critical role in mediating brain homeostasis and inflammatory responses in Alzheimer's disease (AD). The soluble form of TREM2 (sTREM2) exhibits neuroprotective effects in AD, though the underlying mechanisms remain elusive. Moreover, differences in ligand binding between TREM2 and sTREM2, which have major implications for their roles in AD pathology, remain unexplained.
View Article and Find Full Text PDFSmall
September 2025
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
Polyethylene terephthalate (PET) glycolysis presents an effective solution to address plastic pollution while promoting the utilization of renewable resources. It is highly important to gain in-depth insights into the identification of the well-defined active sites and the structure-activity relationships in PET glycolysis. Herein, PW@UiO-67 with different exposed crystal facets, i.
View Article and Find Full Text PDFMater Today Bio
October 2025
Yunnan Key Laboratory of Breast Cancer Precision Medicine, Institute of Biomedical Engineering, Kunming Medical University, Kunming, 650500, Yunnan, China.
Achieving precise intratumoral accumulation and coordinated activation remains a major challenge in nanomedicine. Photothermal therapy (PTT) provides spatiotemporal control, yet its efficacy is hindered by heterogeneous distribution of PTT agents and limited synergy with other modalities. Here, we develop a dual-activation nanoplatform (IrO-P) that integrates exogenous photothermal stimulation with endogenous tumor microenvironment (TME)-responsive catalysis for synergistic chemodynamic therapy (CDT) and ferroptosis induction.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
September 2025
Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, 250 68 Řež, Czech Republic.
Coordination polymers (CPs) are versatile materials formed by metal ions and organic ligands, offering a broad range of structural and functional possibilities. Phosphonates and phosphinates are particularly attractive ligands for CPs due to their multiple binding sites, varied coordination geometries, and ability to form robust network structures. Phosphonates, considered harder ligands, form strong bonds with hard metals such as Fe, while phosphinates offer additional versatility due to the varied pendant groups on phosphorus.
View Article and Find Full Text PDF