98%
921
2 minutes
20
Seeds exhibit primary dormancy to prevent germination under unfavourable conditions. Previous studies have shown that the gibberellin signalling intermediate RGA-LIKE2 (RGL2) forms a transcription factor complex with DNA-BINDING ONE ZINC FINGER6 (DOF6) in regulating seed dormancy in Arabidopsis. Using an RNA-sequencing approach, we identified MAJOR LATEX PROTEIN-LIKE PROTEIN329 (MLP329) as a downstream target of DOF6. MLP329 was found to be a positive regulator of primary seed dormancy, because freshly harvested unstratified mlp329 mutant seeds showed early germination, while unstratified transgenic seeds overexpressing MLP329 showed poor germination. MLP329 expression level was reduced in wild-type seeds upon dry storage and cold stratification. MLP329 expression level was enhanced by DOF6; however, DOF6-dependent MLP329 expression was suppressed in the presence of RGL2. MLP329 expression was enhanced in seeds treated with ABA and auxin IAA. Moreover, the mlp329 mutant seeds exhibited enhanced expression of the GA biosynthetic gene GA1 and suppression of the ABA biosynthetic gene ZEP compared to the overexpression lines. The observed suppression of DOF6-dependent MLP329 expression by RGL2 reveals a possible negative feedback mechanism to modulate seed dormancy. MLP329 also probably enhances the endogenous ABA/GA ratio to positively regulate primary seed dormancy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/erac337 | DOI Listing |
Front Plant Sci
September 2025
College of Life Sciences, Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China of Ministry of Education, Shaanxi Normal University, Xi'an, China.
Plant seeds have evolved diverse dormancy types and regulatory mechanisms to adapt to environmental conditions and seasonal changes. As a commonly used rootstock for cultivated pears, faces challenges in seedling production and large-scale cultivation due to limited understanding of seed dormancy mechanisms. In this study, we report that seeds exhibit non-deep physiological dormancy, with seed coats playing a pivotal regulatory role.
View Article and Find Full Text PDFCrit Rev Immunol
September 2025
Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Dist. Medchal,500078, Telangana State, India.
Caseinolytic protease P (ClpP) is a highly conserved serine protease that plays a pivotal role in protein homeostasis and quality control in bacteria, mitochondria of mammalian cells, and plant chloroplasts. As the proteolytic core of the ATP-dependent Clp protease complex, ClpP partners with regulatory ATPases (e.g.
View Article and Find Full Text PDFPhysiol Plant
September 2025
Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, Saskatchewan, Canada.
Dormancy release and germination of the seed are two separate, but continuous phases controlled by both external (e.g., light and temperature) and internal (e.
View Article and Find Full Text PDFEnviron Microbiol Rep
October 2025
École d'urbanisme et d'architecture de paysage, Faculté de l'aménagement, Université de Montréal, Montréal, Québec, Canada.
Bioretention (BR) systems are green infrastructures used to manage runoff even in cold climates. Bacteria and fungi play a role in BR's performance. This mesocosm study investigated the influence of plant species and de-icing salt on the diversity, the community composition, and the differential abundance of bacteria and fungi in BR.
View Article and Find Full Text PDFPlant Commun
September 2025
Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; College of Life Sciences, University of Chinese Academy of Sciences
Seed germination is a critical step in the life cycle of plants. The far-red/red light photoreceptor phytochrome B (phyB) plays a dominant role in promoting seed germination, mainly by modulating the metabolism of gibberellin (GA) and abscisic acid (ABA), although the underlying mechanism remains poorly understood. In this study, we identified BREVIPEDICELLUS (BP)/KNAT1, a KNOX transcription factor that acted downstream of phyB and activated light-initiated seed germination in Arabidopsis thaliana.
View Article and Find Full Text PDF