98%
921
2 minutes
20
Pueraria lobata var. montana (P. montana) belongs to the genus Pueraria and originated in Asia. Compared with its sister P. thomsonii, P. montana has stronger growth vigour and cold-adaption but contains less bioactive metabolites such as puerarin. To promote the investigation of metabolic regulation and genetic improvement of Pueraria, the present study reports a chromosome-level genome of P. montana with length of 978.59 Mb and scaffold N50 of 80.18 Mb. Comparative genomics analysis showed that P. montana possesses smaller genome size than that of P. thomsonii owing to less repeat sequences and duplicated genes. A total of 6,548 and 4,675 variety-specific gene families were identified in P. montana and P. thomsonii, respectively. The identified variety-specific and expanded/contracted gene families related to biosynthesis of bioactive metabolites and microtubules are likely the causes for the different characteristics of metabolism and cold-adaption of P. montana and P. thomsonii. Moreover, a graphic genome was constructed based on 11 P. montana accessions. Total 92 structural variants were identified and most of which are related to stimulus-response. In conclusion, the chromosome-level and graphic genomes of P. montana will not only facilitate the studies of evolution and metabolic regulation, but also promote the breeding of Pueraria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9397507 | PMC |
http://dx.doi.org/10.1093/dnares/dsac030 | DOI Listing |
Appl Biochem Biotechnol
September 2025
Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, 51452, Qassim, Saudi Arabia.
Viruses are minuscule entities that cannot survive independently without a Living host. Pathogenic viruses pose a significant threat to global health, resulting annually in the deaths of thousands of people. Recent studies indicate that medicinal plants may serve as an effective source of sustainable natural antiviral agents.
View Article and Find Full Text PDFFEMS Yeast Res
September 2025
Enology and Fermentation Biotechnology Area, Department of Science and Food Technology. Faculty of Chemistry, Universidad de la Republica. Montevideo, Uruguay.
Hanseniaspora species are among the most prevalent yeasts found on grapes and other fruits, with a growing role in wine fermentation due to their distinctive metabolic profiles. This review focuses on the functional divergence within the genus, particularly between the fast-evolving fruit clade and the slow-evolving fermentation clade. While species in the fruit clade often exhibit limited fermentation capacity with interesting enzymatic activity, members of the fermentation clade-especially H.
View Article and Find Full Text PDFFood Funct
September 2025
Department of Chemistry, King Saud University, 11451, Riyadh, Saudi Arabia.
Consumption of mango has been associated with a number of beneficial effects on health which have been attributed to phenolic catabolites originating from (poly)phenols following ingestion. To investigate the origins of potentially bioactive phenolic catabolites, ileostomists and subjects with a full gastrointestinal tract on a low(poly)phenol diet ingested a mango pulp purée containing 426 μmol of (poly)phenols consisting mainly of gallotannins and cinnamic acids, along with 231 μmol of the aromatic amino acids phenylalanine and tyrosine. Over a 24 h period post-mango intake plasma and urine were collected and analysed by UHPLC-HRMS.
View Article and Find Full Text PDFClin Pharmacol
September 2025
Department of Biology, College of Science Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
Cancer remains the second leading cause of death worldwide, highlighting the urgent need for novel therapeutic approaches. Fungi are a rich source of bioactive metabolites, some of which exhibit potent anticancer properties. This scoping review evaluates the current research on fungal metabolites with anticancer potential, focusing on species native to Saudi Arabia's unique ecosystem.
View Article and Find Full Text PDFFood Funct
September 2025
Department of Nutrition, University of California, Davis, Davis, 95616 CA, USA.
Phenolic compounds are widely recognized for their anti-proliferative and chemopreventive properties, making them potential candidates for cancer therapy. (LC) and (OE) are two phenolic-rich plant extracts with established antitumor activity. Despite their distinct phytochemical compositions, a clinical intervention study identified nine common bioavailable metabolites in human plasma following ingestion of these extracts.
View Article and Find Full Text PDF