Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We report a quantitative analysis of various plant-biochar samples (S1, S2 and S3) by utilizing a laser-induced breakdown spectroscopy (LIBS) technique. For LIBS analysis, laser-induced microplasma was generated on the target surface by using a focused beam through a high-power Nd: YAG laser and optical emission spectra were recorded using a charged coupled device (CCD) array spectrometer, with wavelength ranges from 200 nm to 720 nm. The spectroscopical analysis showed the existence of various ingredients, including H, Li, Ca, Na, Al, Zn, Mg, Sr, Si, and Fe, along with a CN molecular emission band due to BΣ - XΣ electronic transition. By assuming conditions of the plasma is optically thin and in LTE, calibration-free laser-induced breakdown spectroscopy (CF-LIBS) was utilized for the compositional analysis of the ingredients present in the three plant-biochar samples. To lower the uncertainties, we used an average composition (%) of the three plant-biochar samples. The quantitative study of the plant-biochar samples was also achieved using the energy dispersive X-ray (EDX) technique, showing good agreement with the CF-LIBS technique. In addition, statistical analysis, such as principal component analysis (PCA), was performed for the clustering and classification of the three plant-biochar samples. The first three PCs explained an overall ~91% of the variation in LIBS spectral data, including PC1 (58.71%), PC2 (20.9%), and PC3 (11.4%). These findings suggest that LIBS is a robust tool for rapid measurement of heavy as well as light elements, such as H, Li, and nutritional metals in plant-biochar samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370218PMC
http://dx.doi.org/10.3390/molecules27155048DOI Listing

Publication Analysis

Top Keywords

plant-biochar samples
24
three plant-biochar
12
molecular emission
8
emission band
8
laser-induced breakdown
8
breakdown spectroscopy
8
plant-biochar
7
analysis
6
samples
6
laser spectroscopic
4

Similar Publications

We report a quantitative analysis of various plant-biochar samples (S1, S2 and S3) by utilizing a laser-induced breakdown spectroscopy (LIBS) technique. For LIBS analysis, laser-induced microplasma was generated on the target surface by using a focused beam through a high-power Nd: YAG laser and optical emission spectra were recorded using a charged coupled device (CCD) array spectrometer, with wavelength ranges from 200 nm to 720 nm. The spectroscopical analysis showed the existence of various ingredients, including H, Li, Ca, Na, Al, Zn, Mg, Sr, Si, and Fe, along with a CN molecular emission band due to BΣ - XΣ electronic transition.

View Article and Find Full Text PDF

The low allowable limit of triazine herbicides (THs) in rice makes it imperative to develop novel sample pretreatment methods for extraction and preconcentration of THs. Herein, a phosphoric acid activated biochar (PBC) was prepared and modified by chitosan (CS). For THs with different polarities, CS-PBC with multiple interaction sites exhibited satisfactory chemisorption.

View Article and Find Full Text PDF

Eisenia fetida and biochar synergistically alleviate the heavy metals content during valorization of biosolids via enhancing vermicompost quality.

Sci Total Environ

September 2019

Soil and Water Science Department, Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA.

Impact of different biochars supplemented (10% w/w) to promote vermicomposting of sewage sludge (SS) and kitchen waste (KW) mixture (SS + KW, 70:30) was studied on the growth, reproduction and survival of earthworms, and ultimately the quality of vermicompost. Four types of biochar used as secondary material for preincubation (16 days) and vermicomposting (30 days) were: pine tree biochar (PTB), poplar plant biochar (PPB), wetland plant biochar (WPB) and yard waste biochar (YWB). Preincubation and vermicomposting of biomass mixture were undertaken in 60 L and 2 L capacity round-shaped bioreactors, respectively.

View Article and Find Full Text PDF