Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Two different mid-infrared (mid-IR) solid-state crystalline laser active media of Cr2+, Fe2+:Zn1-xMnxSe and Cr2+, Fe2+:Zn1-xMgxSe with similar amounts of manganese or magnesium ions of x ≈ 0.3 were investigated at cryogenic temperatures for three different excitation wavelengths: Q-switched Er:YLF laser at the wavelength of 1.73 μm, Q-switched Er:YAG laser at 2.94 μm, and the gain-switched Fe:ZnSe laser operated at a liquid nitrogen temperature of 78 K at ∼4.05 μm. The temperature dependence of spectral and laser characteristics was measured. Depending on the excitation wavelength and the selected output coupler, both laser systems were able to generate radiation by Cr2+ or by Fe2+ ions under direct excitation or indirectly by the Cr2+→ Fe2+ energy transfer mechanism. Laser generation of Fe2+ ions in Cr2+, Fe2+:Zn1-xMnxSe and Cr2+, Fe2+:Zn1-xMgxSe (x ≈ 0.3) crystals at the wavelengths of ∼4.4 and ∼4.8 μm at a temperature of 78 K was achieved, respectively. The excitation of Fe2+ ions in both samples by direct 2.94 μm as well as ∼4.05 μm radiation or indirectly via the Cr2+→ Fe2+ ions' energy transfer-based mechanism by 1.73 μm radiation was demonstrated. Based on the obtained results, the possibility of developing novel coherent laser systems in mid-IR regions (∼2.3-2.5 and ∼4.4-4.9 μm) based on AIIBVI matrices was presented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9369922PMC
http://dx.doi.org/10.3390/ma15155277DOI Listing

Publication Analysis

Top Keywords

fe2+ ions
12
laser generation
8
excitation wavelengths
8
laser
8
cr2+ fe2+zn1-xmnxse
8
fe2+zn1-xmnxse cr2+
8
cr2+ fe2+zn1-xmgxse
8
μm
8
173 μm
8
294 μm
8

Similar Publications

Galvanizing waste-derived Zn-induced defective Fe-based metal-organic frameworks as superior adsorbent for enhanced antibiotic removal.

Environ Res

September 2025

College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China; Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial University Key Laboratory of Poll

The derivation of defect-engineered metal-organic frameworks (MOFs) from industrial waste simultaneously mitigates environmental pollution, reduces MOF synthesis costs, and enhances adsorption performance. Herein, this study demonstrates a sustainable strategy for the resourceful synthesis of iron-based MOF s-MIL-100(Fe) using galvanizing pickling waste liquor (80.5 wt.

View Article and Find Full Text PDF

Coordination polymers (CPs) are versatile materials formed by metal ions and organic ligands, offering a broad range of structural and functional possibilities. Phosphonates and phosphinates are particularly attractive ligands for CPs due to their multiple binding sites, varied coordination geometries, and ability to form robust network structures. Phosphonates, considered harder ligands, form strong bonds with hard metals such as Fe, while phosphinates offer additional versatility due to the varied pendant groups on phosphorus.

View Article and Find Full Text PDF

Biochemical Ferrous Ions (Fe2+) Mediated Fenton Reaction: A Biological Prodigy for Curing and Developing Autoimmune Rheumatoid Arthritis and Cancer.

J Environ Pathol Toxicol Oncol

September 2025

Pharmacology and Drug Discovery Research Laboratory, Division of Life Sciences; Institute of Advanced Study in Science and Technology (IASST), An Autonomous Institute under - Department of Science & Technology (Govt. of India).

Iron is an essential trace element for the human body, but having too much or too little of it can cause various biological issues. When ferrous ions react with hydrogen peroxide, they create highly reactive and soluble hydroxyl radicals that can damage cells through oxidation. This reaction, known as the Fenton reaction, can cause lipid peroxidation and ferroptosis.

View Article and Find Full Text PDF

The gas-phase structures of dibenzo-24-crown-8 (DB24C8) and dinaphtho-24-crown-8 (DN24C8) complexes with divalent metal ions (Mg, Ca, Sr, Ba, Fe, Ni, and Zn) were investigated by cryogenic ion mobility-mass spectrometry (IM-MS) in combination with density functional theory calculations. Several complexes, particularly those of DN24C8, exhibited multiple coexisting conformers. DFT-optimized structures were classified based on the relative orientation of the two aromatic rings in the crown ether.

View Article and Find Full Text PDF

Upconverting nano-paste in 3D-printed phone camera setup for soil phyto-iron sensing.

Anal Chim Acta

November 2025

Institute of Nano Science and Technology, Knowledge City, Sahibzada Ajit Singh Nagar, Sector- 81, Punjab, 140306, India. Electronic address:

Background: Iron (Fe) is an essential micronutrient for plant growth, but the conventional DTPA soil analysis method for detecting available iron has notable limitations, requiring advanced instruments and lengthy preparation time. Developing a more affordable, user-friendly, and efficient method for iron detection in soil could greatly improve crop nutrition management. Here, a facile nanoscopic method was developed to quantify available Fe ions in the soil by forming a luminescence quenching complex in chelation with bathophenanthroline disulphonic acid disodium salt (Fe/BPDS complex).

View Article and Find Full Text PDF