Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In migratory systems, variation in individual phenology can arise through differences in individual migratory behaviors, and this may be particularly apparent in partial migrant systems, where migrant and resident individuals are present within the same population. Links between breeding phenology and migratory behavior or success are generally investigated at the individual level. However, for breeding phenology in particular, the migratory behaviors of each member of the pair may need to be considered simultaneously, as breeding phenology will likely be constrained by timing of the pair member that arrives last, and carryover effects on breeding success may vary depending on whether pair members share the same migratory behavior or not. We used tracking of marked individuals and monitoring of breeding success from a partially migrant population of Eurasian oystercatchers () breeding in Iceland to test whether (a) breeding phenology varied with pair migratory behavior; (b) within-pair consistency in timing of laying differed among pair migratory behaviors; and (c) reproductive performance varied with pair migratory behavior, timing of laying, and year. We found that annual variation in timing of laying differed among pair migratory behaviors, with resident pairs being more consistent than migrant and mixed pairs, and migrant/mixed pairs breeding earlier than residents in most years but later in one (unusually cold) year. Pairs that laid early were more likely to replace their clutch after nest loss, had higher productivity and higher fledging success, independent of pair migratory behavior. Our study suggests that the links between individual migratory behavior and reproductive success can vary over time and, to a much lesser extent, with mate migratory behavior and can be mediated by differences in laying dates. Understanding these cascading effects of pair phenology on breeding success is likely to be key to predicting the impact of changing environmental conditions on migratory species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9353121PMC
http://dx.doi.org/10.1002/ece3.9184DOI Listing

Publication Analysis

Top Keywords

migratory behavior
32
pair migratory
24
breeding phenology
20
migratory behaviors
16
migratory
15
breeding success
12
timing laying
12
breeding
10
pair
9
effects pair
8

Similar Publications

RNAi bioassays targeting bursicon reveal potential targets for pest control of Henosepilachna vigintioctopunctata.

Pestic Biochem Physiol

November 2025

Henan Engineering Laboratory of Pest Biological Control/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, People's Republic of China.

Henosepilachna vigintioctopunctata represents a significant economic pest, typically controlled through the use of chemical insecticides. The introduction of RNA interference (RNAi) technology has opened new avenues for biopesticide development, leading to the identification of various genes that are crucial for the growth and development of insects. However, the efficient screening of target genes in H.

View Article and Find Full Text PDF

Mechanotransduction plays a pivotal role in shaping cellular behavior including migration, differentiation, and proliferation. To investigate this mechanism more accurately further, this study came up with a novel elastomeric substrate with a stiffness gradient using a sugar-based replica molding technique combined with a two-layer PDMS system. The efficient water solubility of candy allows easy release, creating a smooth substrate.

View Article and Find Full Text PDF

Upstream fish movement in the Danube River at the Iron Gate is blocked by the massive hydropower dams and ship locks, as shown by tracking six fish species (vimba bream Vimba vimba, common nase Chondrostoma nasus, barbel Barbus barbus, asp Leuciscus aspius, Pontic shad Alosa immaculata and common carp Cyprinus carpio). In the absence of effective fish passage systems, the current level of river connectivity is insufficient to support upstream movement and migration for this diverse, multispecies fish community. The tagged cyprinids displayed evidence of migratory behaviour.

View Article and Find Full Text PDF

Bird-window collisions are a significant and growing threat to birds, but the issue is still understudied in many geographical areas and stages of the avian annual life cycle. The mountainous topography and numerous distinct biogeoclimatic zones along the Pacific coast of Canada and the United States may result in regional and seasonal differences in collision mortality and species vulnerability to collisions. We surveyed daily for evidence of bird-window collisions over six 21-day periods in fall, early winter, and late winter between 2019 and 2022 at a university campus in southwestern British Columbia, Canada, and assessed individual species' vulnerability to collisions by examining whether species-specific collision rates were disproportionate to their local abundance.

View Article and Find Full Text PDF

Assessing the spatial risk of wild birds in avian influenza transmission using global risk score.

Sci Rep

September 2025

Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, 402, Taiwan.

Accumulated evidence supports the critical role of migratory wild birds in highly pathogenic avian influenza virus (HPAIV) spread and evolution. An effective surveillance strategy to study HPAIV dispersal in wild birds and identify critical interfaces between wild birds and poultry on the landscape for potential interspecies transmission and virus evolution will be essential. This study integrates conditional likelihood with epidemiological research designs to investigate the risk of poultry farm outbreaks due to the introduction of HPAIV by migratory birds from the Taiwan citizen scientist dataset.

View Article and Find Full Text PDF