Tunable multiple light emissions of core-shell structures based on rare earth ions doped on the surfaces of organic cocrystals.

Phys Chem Chem Phys

State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.

Published: August 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The charge transfer (CT) interactions play a vital role in tuning the luminescence of organic crystals. The enhanced energy transfer (ET) effect in rare earth (RE) ions is a significant method to achieve long-lifetime fluorescence. These studies are of great significance in the fields of photoelectric functional materials. However, the effect of CT interactions on the process of ET from the cocrystal ligand group to RE ions is unknown. In this work, we have doped Eu ions, Tb ions and Eu/Tb mixed ions on the surfaces of Phen-TCNB (Phen = 1,10-phenanthroline, and TCNB = 1,2,4,5-tetracyanobenzene) to construct organic cocrystal-type core-shell structures by the epitaxial growth method. The core-shell structures exhibited multiple photoluminescence depending on the types and proportions of RE ions that are doped on the surfaces of the cocrystals. Experimental and theoretical investigations prove that the ET enhancements from ligand groups to Eu ions originate from appropriate energy differences between the lowest triplet states of Phen-TCNB and the lowest excited state of RE ions. In contrast, the reduced TbD lifetime is caused by the energy back transfer process since the energy difference becomes small. These results reveal that the multiple luminescences of the cocrystal-type core-shell structures can be adjusted by the CT and ET, and this study provides a new strategy for developing novel optoelectronic materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp02288eDOI Listing

Publication Analysis

Top Keywords

core-shell structures
16
ions
9
rare earth
8
earth ions
8
ions doped
8
doped surfaces
8
energy transfer
8
cocrystal-type core-shell
8
tunable multiple
4
multiple light
4

Similar Publications

A Core-Shell Structured Microneedle Patch With Adjustable Release of Kinetically for the Treatment of Melasma.

Adv Healthc Mater

September 2025

National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China.

Melasma is a facial hyperpigmentation disease that significantly impacts patients' quality of life. Clinical treatment is limited by the short half-lives and hydrophilicity of drugs, necessitating release curve optimization to maintain a stable therapeutic concentration for an extended period. This article utilizes natural biomaterials to design a core-shell structured microneedle, combining the "immediate release" and "delayed release" module to achieve programmed drug release.

View Article and Find Full Text PDF

Interstitial Cobalt in Pt Shell of Pd@Pt Mesoporous Core-Shell Nanospheres with Strong d-d Orbital Hybridization for Enhanced Electrocatalytic Ammonia Oxidation.

Adv Mater

September 2025

School of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Mi

Ammonia oxidation reaction (AOR) is critical for efficient ammonia utilization as a hydrogen carrier, yet state-of-the-art Pt-based catalysts suffer significant activity loss due to strong NO species (NO, NO) adsorption. Herein, Pd@Pt mesoporous core-shell nanospheres with interstitial Co in Pt shell (Pd@Pt-Co MCSN) are demonstrated as an excellent AOR electrocatalyst, which achieves a mass activity of 293.6 A g at 0.

View Article and Find Full Text PDF

Two birds with one stone: Versatile lanthanide-doped core-shell-shell nanoparticles with enhanced red upconversion for nanothermometry and MR imaging.

J Colloid Interface Sci

September 2025

Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu 610041, China. Electronic address: Zhaoy

Lanthanide-doped fluoride nanoparticles show great potential for optical thermometry and bioimaging. However, their applications are still constrained by inherent limitations in luminescence intensity and functional versatility. To overcome these challenges, we propose a core-active shell-inert shell nanostructure that integrates multifunctional capabilities within a single platform.

View Article and Find Full Text PDF

The efficient and sustainable remediation of contaminated water calls for catalytic systems that must clean broadly, endure widely, and last repeatedly. In this regard, we report the development of sulfonate-functionalized core-shell hydrogel beads embedded with synthesized gold nanoparticles (AuNPs) that exhibit intrinsic oxidase-like activity without requiring external light or chemical oxidants. The sulfonate ligands modulate the surface electronic environment of the AuNPs, facilitating singlet oxygen generation via a nonplasmonic, radiationless mechanism.

View Article and Find Full Text PDF

Precisely structured nanoclusters provide ideal platforms for elucidating structural evolution and structure-activity relationships. However, mechanistic understanding of dynamic core-shell rearrangements has long been impeded by the elusive nature of intermediates during transformation processes. Here, we show that ligand engineering-driven asymmetric thiolate exchange enables atomic-level visualization of structural evolution, thereby overcoming the long-standing challenge of intermediate capture.

View Article and Find Full Text PDF