Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Developing non-noble metal catalyst with super trifunctional activities for efficient overall water splitting (OWS) and rechargeable Zn-air battery (ZAB) is urgently needed. However, catalysts with excellent oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER) performances are relatively few. Although metal-ionic-conductor KFeO (KFO) can output large current densities for OER/HER even in 10.0 M KOH electrolyte, its water-splitting property still needs to be further improved. Herein, we introduced V directly into KFO and synthesized the binder-free nickel foam (NF) basal V-KFO nanoparticles (labeled as V-KFO/NF). Both the theoretical analysis and actual experimental data certify that V doping enhances the instinct water-splitting property of V-KFO/NF. Additionally, V-KFO/NF can directly serve as the air cathode of liquid/flexible ZABs. The assembled liquid ZAB can continue the charge-discharge cycling testing with a lower voltage gap (0.834 V) and a longer operation life (>550 h) at 10 mA cm. Meanwhile, the assembled flexible ZAB can drive the two-electrode water-splitting unit of V-KFO/NF and needs only 1.54 V to achieve the current density of 10 mA cm, which is much lower than that of KFO/NF (1.59 V). This work not only provides a novel and efficient trifunctional catalyst for a self-powered water-splitting device but also is the foundation support for other heteroatom-doped low-cost materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c09725 | DOI Listing |