Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Paleobiological reconstructions based on molecular fossils may be limited by degradation processes causing differential preservation of biomolecules, the distinct taxonomic specificity of each biomolecule type, and analytical biases. Here, we combined the analysis of DNA, proteins and lipid biomarkers using 16S and 18S rRNA gene metabarcoding, metaproteomics and lipid analysis to reconstruct the taxonomic composition and metabolisms of a desiccated microbial mat from the McMurdo Ice Shelf (MIS) (Antarctica) dated ~1,000 years BP. The different lability, taxonomic resolution and analytical bias of each biomolecule type led to a distinct microbial community profile. DNA analysis showed selective preservation of DNA remnants from the most resistant taxa (e.g., spore-formers). In contrast, the proteins profile revealed microorganisms missed by DNA sequencing, such as , and showed a microbial composition similar to fresh microbial mats in the MIS. Lipid hydrocarbons also confirmed and suggested the presence of mosses or vascular plant remnants from a period in Antarctica when the climate was warmer (e.g., Mid-Miocene or Eocene). The combined analysis of the three biomolecule types also revealed diverse metabolisms that operated in the microbial mat before desiccation: oxygenic and anoxygenic photosynthesis, nitrogen fixation, nitrification, denitrification, sulfur reduction and oxidation, and methanogenesis. Therefore, the joint analysis of DNA, proteins and lipids resulted in a powerful approach that improved taxonomic and metabolic reconstructions overcoming information gaps derived from using individual biomolecules types.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9345047PMC
http://dx.doi.org/10.3389/fmicb.2022.799360DOI Listing

Publication Analysis

Top Keywords

microbial mat
12
mat mcmurdo
8
mcmurdo ice
8
ice shelf
8
biomolecule type
8
combined analysis
8
analysis dna
8
dna proteins
8
microbial
6
taxonomic
5

Similar Publications

Unlabelled: Microbial mats inhabiting extreme environments have been studied as modern analogs of stromatolites. Mats in Octopus Spring and Mushroom Spring, Yellowstone National Park, are predominated by unicellular photoautotrophic cyanobacteria ( spp.), which are thought to cross-feed filamentous photoheterotrophic bacteria (mainly spp.

View Article and Find Full Text PDF

Thermal ecosystems in Uzbekistan remain poorly characterized, particularly through culture-independent approaches. In this study, we performed 16S rRNA gene metabarcoding and metagenomic sequencing of microbial communities from a hot stream formed by the discharge of thermal artesian groundwater in the Navoiy region. The taxonomic composition of microbial communities varied with temperature and sample type, with the phylum Chloroflexota abundant in most samples.

View Article and Find Full Text PDF

Altered precipitation regimes, both in intensity and duration, can profoundly influence the structure and function of soil microbial communities, yet the patterns and drivers of these responses remain unclear across ecosystem types. Here, using data exclusively from 101 field experiments conducted in China (yielding 695 observations), we investigated the impacts of altered precipitation on soil microbial biomass, diversity, and enzymatic activity in forest and grassland ecosystems. Soil microbial biomass carbon (MBC) and nitrogen (MBN) increased in response to precipitation addition, particularly in grasslands, but they decreased under reduced precipitation, with the decline being more pronounced in forests.

View Article and Find Full Text PDF

The alteration of biomass into simpler molecular remnants is relevant for the search for ancient and extraterrestrial life, where identifying recurrent taphonomic pathways is crucial for the attribution of biogenicity to otherwise nonbiological molecules. This work evaluates the alteration of lipids-recalcitrant biomarkers derived from cell membranes-across a lithification gradient, from a biologically active microbial mat, through a lithifying mat, to a fully lithified microbialite. Lipids from these samples, obtained from the high-altitude, hypersaline lake of Pozo Bravo (Argentinean Andes), were analyzed at molecular and isotopic levels to reconstruct biological sources and assess preservation along a bio-to-geo transition.

View Article and Find Full Text PDF

A Reassessment of the Coprostane Biomarker in the Ediacaran With Implications for Dickinsonia.

Geobiology

January 2025

Department of Earth and Planetary Sciences, University of California, Davis, Davis, California, USA.

The discovery of cholestane in animal fossils from the Ediacaran (571-541 million years ago) has generated much excitement, but it is not the only interesting biomarker recovered. Coprostane, a geologically stable form of coprostanol, has also been found in Ediacaran rocks. This is surprising, since coprostanol is typically used in modern settings as an environmental biomarker for humans and other mammals, who produce the compound with help from bacteria in their gut.

View Article and Find Full Text PDF